
JPL D-7669, Part 2

Planetary Data System
Standards Reference

June 1, 1999
Version 3.3

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

TABLE OF CONTENTS

PDS Standards Reference Change Log..ii

1. Introduction... 1-1

2. Cartographic Standards... 2-1

3. Data Type Definitions ... 3-1

4. Data Products .. 4-1

5. Data Product Labels .. 5-1

6. Data Set / Data Set Collection Contents and Naming... 6-1

7. Date / Time Format... 7-1

8. Directory Types and Naming.. 8-1

9. Documents... 9-1

10. File Specification and Naming.. 10-1

11. Media Formats for Data Submission and Archive.. 11-1

12. Object Description Language (ODL) Specification and Usage.............................. 12-1

13. PDS Objects .. 13-1

14. Pointer Usage .. 14-1

15. Record Formats ... 15-1

16. SFDU Usage.. 16-1

17. Usage of N/A, UNK, and NULL... 17-1

18. Units of Measurement ... 18-1

19. Volume Organization and Naming.. 19-1

20. Zip Compression... 20-1

Appendix A. Data Object Definitions.. A-1
Appendix B. Complete PDS Catalog Object Template Set..B-1
Appendix C. Internal Representation of Data Types ... C-1
Appendix D. Examples of Required Files.. D-1
Appendix E. NAIF Toolkit Directory Structure..E-1
Appendix F. Acronyms and Abbreviations...F-1
Appendix G. SAVED Data .. G-1
Index ...I-1

Change Log ii

PDS Standards Reference Change Log
Version Section Change

3.1 1.1 PDS Data Policy added

2.3 Reference coordinate standard expanded to support body-
fixed rotating, body-fixed non-rotating, and inertial
coordinate systems.

2.4 Ring coordinate standard added.

3.0 List of internal representations of data types moved to
Appendix C

3.2 EBCDIC_CHARACTER added to PDS Standard data types

5.2.3 Minimal label option described

6.3 Data set collection naming -- data processing level component
made optional

6.4 Data set naming -- added support for SPICE and Engineering,
where no instrument component applies

10.0, ALL PDS use of UNIX/POSIX forward slash separator for path
names. VMS-style bracket notation replaced.

10.2.1 Required file names for catalog objects included

12.5.4.2 PDS use of double quotes clarified

13.2 Use of Primitive objects described

14 New chapter -- Pointer Usage

17 New chapter -- PDS Usage of N/A, UNK, and NULL

19 Logical Volume organization added

Appendix A Primitive Objects added

Appendix A Header object -- required and optional keyword lists changed
Container object -- Column no longer a requried sub-object

iii Change Log

Appendix B Streamlined Catalog Object Templates with examples replace
3.0 set

Appendix C New appendix containing internal representations of data
types (moved from Chapter 3)

Appendix D Outline and example for AAREADME.TXT added

Appendix E Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section

 deleted.

Index The document now features an index.

ALL No other substantive changes have been made to the
standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have
been supplied.

Version Section Change

3.2 Release Date: 7/24/95

5.1.2 Label format discussion added
Noted that values in labels should be upper case (except
descriptions). Fixed examples in Appendix A.

5.2.3, Appendix A Noted that for data products using minimal labels,
DATA_OBJECT_TYPE = FILE in the Data Set Catalog
Template

6 Added target IDs for DUST and SKY
Added instrument component values SEDR and POS
Noted that Data Set and Data Set Collection IDs and Names
should be upper case. Fixed examples.

8 and 19 Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

8.2 SOFTWARE Subdirectory naming recommendation added

9.1 Volumes may contain multiple versions of VOLINFO

Change Log iv

9.2.1 Increased maximum line length in text file to 78 characters
plus CR/LF

10.1 Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

10.2 Added recommendation that file extension identify the data
type of a file.
Added .QUB as reserved file extension for spectral image
qubes.
Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT
Added LABINFO.TXT to list of required xxxINFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

10.2.3 and 5.1 added note that detached label file (*.LBL) should have the
same base name as the associated data file

11.1.1 Added PDS Extended Attribute Record (XAR) policy

11.1.2 Added recommendation that CDs be premastered using single-
session, single-track format.

11.1.3 Added section on Packaging Software files on a CD-ROM

14.1.2 Added new example of structure pointer

15 Added recommendation that for VAX/VMS-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VMS restriction to an even
number of bytes in section 15.2

15.1 Removed discussion of use of BLOCK_BYTES and
BLOCKING_TYPE (since this data element not in PSDD)

15.3 Added notation that CR/LF is required line terminator for
PDS label and catalog files

15.5 Reworded first sentence.

17.2 Allow definition of numeric constants representing N/A,
UNK, and NULL to be defined for use in an INDEX table.

18 replaced reference to PDS V1.0 with a general statement

v Change Log

19 Added SOFTWARE subdirectory recommendations

19 Recommend that an archive volume be based on a single
version of the PDS standards. Volume organization guidelines
added.

19.2 Clarified requirements for files & directories when logical
volumes used

19.3 INDEX table standard update

19.3 use of axx- and bxx- prefixes in required file names
clarified

19.4, Appendix A fixed examples--Volume and Volume set names capitalized

19.5.1 Volume set ID formation rule modified.

Appendix A updated COLUMN, BIT_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Appendix A Added ALIAS and INDEX_TABLE objects

Appendix A Added examples of COLUMN objects having ITEMs

Appendix A Clarified use of ROW_SUFFIX_BYTES and
ROW_PREFIX_BYTES for SPARE fields in Tables with
fixed length records

Appendix A Clarified the requirements for VOLUME objects for Logical
volumes

Appendix A Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion..

Appendix B Inventory, Software_Inventory and Target templates added

Appendix B Removed incorrect example of use of Personnel template

Appendix D INDXINFO.TXT and SOFTINFO.TXT outlines and
examples added

Appendix D.1 Modified example of AAREADME.TXT to include rules on
how pointer statements are resolved.

Change Log vi

Appendix E and F Added Appendix E - NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

ALL corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Change Log Version 3.1 change log updated--some items were missing

Version Section Change

3.3 Release Date: 6/1/99

1.0 Added DVD as new medium
1.3 Changed Version to 3.3
1.6 Updated/corrected references
1.7 Added reference to PDS web page
2.0 Added definition for IAU

Clarified text
2.3 Corrected punctuation
2.7 Fixed punctuation for references
3.4 Corrected punctuation
3.7 Corrected spelling and punctuation
4.0 Added Section headers for Primary & Secondary Objects
4.1 Corrected paragraph formatting
5.1.2 Added paragraph about ASCII character set

Added paragraph about Label Padding
Fixed math in calculating start byte of 8th record
Aligned keyword/values

5.2.2 Corrected grammar
5.2.3 Removed "’"in the Data Set catalog template.
5.3.1 Changed Version to 3.3
5.3.2 Modified last paragraph
5.3.3 Listed examples of primary and secondary objects
5.3.3.2 Changed ’bottom’ to ’following’
5.3.4 Removed AMMOS as an example
5.3.4.1 Removed SPACECRAFT_NAME as valid keyword
5.3.4.3 Removed SPACECRAFT_NAME as valid keyword.
5.3.5 Changed PDS has developed and continues to develop...

Added example for a pointer (^DESCRIPTION)
5.3.6 Aligned keyword/values

Clarified statement
5.3.7 Changed: needed for conformance
6.0 Prioritized organizations that PDS works with
6.1 Provided definition for Data Set Collection and removed

MGN example.

vii Change Log

Corrected spelling (considerations) and punctuation
6.2 Added acronyms for data set name and identifier
6.3 Changed paragraph from future tense to past tense
6.4 Section 5 - comets

Section 6 - added acronyms to list
Section 6 - corrected spelling (ephemeris)
Section 7 - corrected spelling (gravity)
Section 8 - clarified version number rules

7.0 Updated paragraph
7.1 Clarified statements about date/time formats
7.2.1 Added PDS preference for convention
7.3.1 Corrected grammar

Reformatted paragraph
7.3.2 Corrected grammar

Updated paragraphs
8.1 Corrected grammar (standards directory)

Added EXTRAS directory
Added Browse and Data directory descriptions

8.2 Section 4 - Better examples of directory names
Section 5 - Reformatted paragraph
Section 8 - Corrected spelling and grammar

8.3 Changed to valid keywords
8.4 Corrected grammar (data are)
9.0 - 9.3.3 Complete rewrite of Documentation Standard

Added HTML standards
10.0 - 10.1 Added ISO 9660 Level 2 description

Added ";1" to Level 1 description
10.2.1 Clarified required file names paragraphs

Added TARGET_CATALOG pointer to list
10.2.2 VOLDESC.SFD file becomes deprecated
10.2.3 Described detached label

Corrected grammar (its)
10.2.4 Added extensions and changed SPICE extensions

Corrected spelling (postscript) and grammar (data that have)
11.1.1 Changed chapter name
12.1 Aligned equal signs
12.1.1.1 Added reference
12.2 Reformatted paragraph
12.3 Spelling
12.3.1 Corrected punctuation (1.234E2)
12.3.1.2 Corrected value (16#+4B#)

Reformatted paragraph
12.3.1.3 Corrected value (1.234E3)
12.3.2 Updated paragraphs
12.3.2.1 Clarified date format
12.3.2.3 Clarified paragraph

Change Log viii

12.3.2.4 Changed year to 4 digits
12.3.2.5 Updated paragraph
12.3.2.5.1 Corrected value (1990-158T15:24:12z)
12.3.3.1 Corrected value ("::=")
12.3.4 Added examples
12.3.5 Corrected punctuation and grammar (units)
12.4 Corrected punctuation
12.4.1 Corrected grammar (the the)

Aligned equal signs
12.4.2 Aligned equal signs
12.5.2 Reformatted asterisks to not be superscript

Corrected value (60.15)
12.5.3.1 Corrected grammar (affect)

Reformatted paragraphs
12.5.4 Corrected value (IO)

Added valid quoted strings
12.5.4.1 Clarified paragraph
12.5.5 Reformatted asterisk to not be superscript

Corrected spelling (eccentricity)
Changed to valid keyword

12.5.6 Corrected value (removed 1st bracket "[")
Changed to valid keyword

12.6 Reformatted paragraphs
12.7 Reformatted paragraphs
12.7.1 Corrected grammar (sections detail)
12.7.2 Corrected grammar ("is that are")
13.1 Added required keywords to definition
14.1.1 Corrected grammar (occurs)
14.1.2 Corrected punctuation

Corrected value (^STRUCTURE)
Changed paragraph numbering

14.2 Reformatted pointer rules
15.0 Reformatted paragraph and table
15.2 Changed paragraph numbering
15.3 Changed paragraph numbering
16.0 Corrected grammar
16.2 Clarified paragraph

Changed case of #mark#
17.1 Changed case of title (and)
17.1.2 Corrected punctuation (information)
17.2 Corrected case of title (and)
18.0 Corrected SI Units (electricity potential, etc)

Updated paragraph
19.1 Corrected grammar (volume types)

Corrected grammar (up to the)
19.3 Corrected grammar (an SFDU)

ix Change Log

Corrected spelling (global)
Updated Catalog and Index definitions
Added description of the EXTRAS directory
Added Preferred Method for supplying PDS catalog objects

19.4.1 Corrected grammar (data have been)
Changed case of value (ID)

19.5 Corrected spelling (radiometry)
Corrected value (VOLUME_SET_NAME)
Corrected value (VOLUME_SET_ID)

19.5.1 Reformatted paragraph
19.7 Corrected case of value (IDs)
20.0 - 20.6 Complete rewrite of Zip Compression
Appendix A Added URL to Cold Fusion pages
A.1 Updated definition for ALIAS

Corrected spelling (subobject)
A.2 Added and changed Optional keywords

Reformatted paragraphs
Corrected spelling (the time)

A.3 Changed Optional keywords
Corrected spelling (created)

A.5 Added TARGET to Optional Objects
Clarified use of CATALOG.CAT
Formatted paragraph

A.7 Formatted paragraph
Changed Optional keywords

A.8 Updated paragraph
A.10 Changed case of keyword values to uppercase
A.11 Corrected grammar (on a)

Corrected grammar (on the medium)
A.12 Removed incorrect statements

Updated example
A.13 Changed Optional keywords
A.14 Removed a Required keyword

Added Optional keywords
A.15 Changed value to keyword (GAZETTEER_TABLE)

Corrected grammar (the breath & upper right)
Added Optional Keywords section
Added Optional Objects section
Added trailing double quote to DESCRIPTION section

A.16 Corrected paragraph to reflect proper file name
Changed value to be enclosed in double quotes

A.18 Added Required and Optional Keywords and Objects sections
A.19 Added BAND_NAME keyword

Added Optional keyword
Changed values to be keyword (CHECKSUM)
Changed values to be keyword (SCALING_FACTOR)

Change Log x

A.20 Changed paragraphs
Changed case of keyword values to uppercase

A.21 Reformatted paragraphs
Removed Optional Keyword
Added Optional Objects
Corrected example (see additional example in A.27.1)

A.23 Added example for CORE_ITEM_TYPE
Corrected FILE_RECORDS to be accurate
Corrected invalid keyword (SUB_SOLAR_AZIM UTH)

A.24 Corrected grammar (data that vary)
A.26 Corrected grammar (data are)

Corrected punctuation (The Tookit)
A.27 Corrected grammar (meta-data which are)

Updated section numbers to reflect location (spares)
Repaired examples (byte lengths)

A.28 Line length to 72 chars
Added Required and Optional Objects
Repaired example

A.29 Updated Optional keyword
Changed case of keyword values to uppercase

Appendix B Changed paragraph
Changed text description length to be 80 characters from 72
Added text formatting standards

B.1 Corrected punctuation
Repaired example

B.2 Reformatted paragraph
Reformatted and repaired example

B.3 Corrected spelling (DESCRIPTION)
Reformatted paragraph
Reformatted and repaired example

B.4 Corrected spelling (description & instrument)
Reformatted paragraph
Reformatted and repaired example

B.5 Corrected grammar (properties of the)
Reformatted paragraph
Reformatted and repaired example

B.6 Repaired example
B.7 Reformatted paragraph

Reformatted and repaired example
B.8 Repaired example
B.10 Corrected spelling (package)

Replaced example of SOFTWARE_INVENTORY template
B.11 Corrected grammar (target catalog)

Corrected grammar (SURFACE_GRAVITY)
Repaired example

Appendix C Minor corrections throughout text

xi Change Log

C.5 Corrected spelling (exponent-as-stored)
C.10 Corrected spelling (imaginary)
Appendix E Corrected sentence (source code for)

Corrected spelling (spacit)
Corrected grammar (These data are)
Corrected punctuation

Appendix F Corrected CD-WO nomenclature
Added DE (Data Engineer)
Corrected spelling (Principal)

Appendix G Added SAVED Data as new section

Chapter 1. Introduction 1-1

Chapter 1

Introduction

In order for planetary science data to be used by those not involved with its creation, certain sup-
porting information must be available with the data. Such information enables effective data
access and interpretation. Therefore, standards regarding the quality and completeness of data
must be enforced. Also, the interchange of data is increasingly important in planetary science.
Electronic communication mechanisms have grown in sophistication, and the use of new media
(such as CD-ROMs and DVD) for data storage and transfer requires format standards to ensure
readability and usability. The Planetary Data System (PDS) has therefore developed a
nomenclature that is consistent across discipline boundaries, as well as standards for labeling
data files.

1.1 PDS Data Policy

Only data that complies with PDS standards will be published in volumes which are labelled
"Conforms to PDS Standards". Non-compliant data published in recognized formats should be
authored by the publishing institution with PDS participation acknowledged only as "funded by
PDS". The PDS Management Council will make decisions on compliance waivers. Non-
compliant data sets will be permitted only under unusual circumstances.

1.2 Purpose

This document is intended as a reference manual to be used in conjunction with the PDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives
instructions for preparing data sets. In addition, a glossary of terms used throughout this
document is contained as an appendix to the workbook. The Planetary Science Data Dictionary
contains definitions of the standard data element names and objects. This reference document
defines all PDS standards for data preparation.

1.3 Scope

The information included here constitutes Version 3.3 of the Planetary Data System data
preparation standards for producing archive quality data sets.

1-2 Chapter 1. Introduction

1.4 Audience

This document is intended primarily to serve the community of scientists and engineers
responsible for preparing planetary science data sets for submission to the PDS. These include
restored data from the era prior to PDS, mission data from active and future planetary missions,
and data from earth-based sites. The audience includes personnel at PDS Discipline and Data
Nodes, mission Principal Investigators, and Ground Data System engineers.

1.5 Document Organization

The first chapter of this document, Chapter 1 - Introduction, provides introductory material and
lists of other reference documents. The remaining chapters provide a dictionary of data
preparation standards, organized alphabetically by standard name.

1.6 Other Reference Documents

The following reference sources are mentioned in this document:

• Batson, R. M., (1987) "Digital Cartography of the Planets: its Status and Future", Photo-
grammetric Engineering & Remote Sensing 53, 1211-1218.

• Davies, M.E., et al (1991) "Report of the IAU/IAG/COSPAR Working Group on Carto-
graphic Coordinates and Rotational Elements of the Planets and Satellites: 1991",
Celestial Mechanics, 53,377-397.

• Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

• Guide on Data Entity Naming Conventions, NBS Special Publication 500-149.

• Planetary Science Data Dictionary, JPL D-7116 Rev D, July 15, 1996, (Available from
PDS).

• Planetary Data System Data Preparation Workbook Version 3.1, JPL D-7669 Part 1, Feb-
ruary 17, 1995, (Available from PDS)

• Issues and Recommendations Associated with Distributed Computation and Data
Management Systems for the Space Sciences, National Academy Press, Washington, DC,
111p.

International Standards Organization (ISO) References

• ISO 9660:1988 “Information Processing - Volume and File Structure of CD-ROM for
Information Exchange”, April 15, 1988.

• ISO 646:1991 ASCII character set.

Chapter 1. Introduction 1-3

• ISO 8601:1988 “Data Element and Interchange Formats – Representations of Dates and
Times”

SFDU and PVL References

• Standard Formatted Data Units - Structure and Construction Rules, CCSDS 620.0-R-
1.1c, May 1992.

• Standard Formatted Data Units - A Tutorial; CCSDS 620.0-G-1, May 1992.

• Parameter Value Language Specification (ccsd0006); CCSD 641.0-R-0.2, June 1991.

• Parameter Value Language -- A Tutorial; CCSDS 641.0-G-1.0, May 1992.

1.7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data System Data Preparation Workbook,
and this document, the Planetary Data System Standards Reference are available online.
Information on accessing these references may be found on the PDS website, which is located at:

http://pds.jpl.nasa.gov

To obtain a copy of these documents, or for questions concerning these documents, contact the
PDS Operator, or a PDS data engineer.

Chapter 2. Cartographic Standards 2-1

Chapter 2

Cartographic Standards

The following cartographic data standards were developed through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG are also on the key International Astronomical Union (IAU) committees which set these
same standards for international adoption; therefore, the PDS-adopted cartographic standards are
consistent with the IAU standards. The PDS, rather than making unilateral decisions on
cartographic data standards, looks to the PCWG as the controlling body for these standards
within NASA and the PDS. It is recognized that the IAU continually reviews its standards and
may, at some time, make a change affecting the cartographic standards. If this happens, the PDS
will work with the PCWG and decide its own course of action at that time.

Cartographic standards used in a data set should be identified, and where helpful, documented on
an archive volume.

2.1 Inertial Reference Frame/Timetag/Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the "J2000"
system) is the standard inertial reference frame. The Earth Mean Equator and Equinox of
Besselian 1950 (JD 2433282.5) is also to be supported because of the wealth of previous mission
data referenced to this system. The transformations between the two systems are to be available.
Time tagging of data using UTC in Year, Month, Day, Hour, Minute and decimal Seconds is the
standard, with Julian Date being supported. SI metric units, including decimal degrees, are the
standard.

2.2 Spin Axes and Prime Meridians

The IAU-defined spin axes and prime meridians defined relative to the J2000 Inertial Reference
System are the standard for planets, satellites and asteroids where these parameters are defined.
For other planetary bodies, definitions of spin axes and prime meridians determined in the future
should have the body-fixed axes aligned with the principal moments of inertia,with the North
Pole defined as along the spin axis and above the Invariable Plane. Where insufficient
observations exist for a body to determine the principal moments of inertia, coordinates of a
surface feature will be specified and used to define the prime meridian. It is expected that some
small, irregular bodies may have chaotic rotations and will need to be handled on a case-by-case
basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems, body-fixed rotating, body-fixed non-rotating

2-2 Chapter 2. Cartographic Standards

and inertial. A body-fixed coordinate system is one associated with the body (e.g. planetary
body or satellite). In contrast to inertial coordinate systems, the body-fixed system is centered on
the body and rotates with the body (unless it is a non-rotating type), whereas the inertial
coordinate system is fixed at some point in space.

To support the descriptions of these reference coordinate systems, the PDS has defined the
following set of data elements (See Planetary Science Data Dictionary for complete
definitions.):

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME
LATITUDE
LONGITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST_LONGITUDE
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, PDS has specifically defined two types of body-fixed rotating coordinate systems,
Planetocentric and Planetographic. However, the set of related data elements are modelled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added when the need arises. If this is the case, contact a PDS
data engineer for assistance.

The definition of Planetographic longitude is dependent upon the rotation direction of the body,
with longitude being measured as increasing in the direction opposite to the rotation. That is to
say that the longitude increases to the west if the rotation is prograde (or eastward) and vice
versa. Table 2.1 lists the rotation direction (prograde or retrograde) of the primary planetary
bodies and the Earth's moon. It also indicates the valid longitude range for each body. In order
to accommodate different traditions in measuring longitude, in the Planetary Science Data
Dictionary, PDS defines a broad longitude range: (-180, 360). Table 2.1 indicates which part of
that range is applicable to which body.

Chapter 2. Cartographic Standards 2-3

Table 2.1: Primary Bodies and Earth’s Moon - Rotation Direction and Longitude Range

Planet Rotation Direction Longitude Range
Earth Prograde (0, 360)

(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)

(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (0, 360)
Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun Prograde (0, 360)

(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Earth, Moon and Sun are prograde, however it has been tradition to
measure longitudes for these bodies as increasing to the east instead of the west. PDS
recommends that the Planetographic longitude standard be followed, but it also will support the
tradition. Therefore, the longitude range of (-180, 180) is supported for the Earth, Moon and
Sun.

2.3.1 Body-Fixed Rotating Coordinate Systems

2.3.1.1 Planetocentric

The Planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatorial plane and a vector connecting the point of interest and the
origin of the coordinate system. Latitudes are defined to be positive in the northern hemisphere
of the body, where north is in the direction of Earth's angular momentum vector, i.e., pointing
toward the hemisphere north of the solar system invariant plane. Longitudes increase toward the
east, making the Planetocentric system right-handed.

2.3.1.2 Planetographic

The Planetographic system has an origin at the center of mass of the body. The planetographic
latitude is the angle between the equatorial plane and a vector through the point of interest,
where the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitude is
defined to increase with time to an observer fixed in space above the object of interest. Thus, for
prograde rotators (rotating counter clockwise as seen from a fixed observer located in the
hemisphere to the north of the solar system invariant plane), planetographic longitude increases
toward the west. For a retrograde rotator, planetographic longitude increases toward the east.

2-4 Chapter 2. Cartographic Standards

2.4 Rings

Locations in planetary ring systems are specified in polar coordinates by a radius distance
(measured from the center of the planet) and a longitude. Longitudes increase in the direction of
orbital motion, so the ring pole points in the direction of right-handed rotation. Note that this
corresponds to the IAU-defined north pole for Jupiter, Saturn and Neptune but the south pole for
Uranus.

Longitudes are given relative to the ascending node of the ring plane on the Earth's mean equator
of J2000. However, the Earth's mean equator of B1950 is also supported as a reference longitude
because of the wealth of data already reduced using this coordinate frame. The difference is
generally a small, constant offset to the longitude. All longitude values fall between 0 and 360
degrees.

Note that ring coordinates are always given in an inertial frame. It is impossible to define a
suitable rotating coordinate frame for a ring system because features rotate at different rates.
When it is necessary to specify the location of a moving body or feature, one must give the
rotation rate and the epoch in addition to the longitude.

The Planetary Science Data Dictionary (PSDD) contains a set of data elements designed to
describe ring-related longitudes. Please see the PSDD for these elements and their complete
definitions.

2.5 Reference Surface

The Digital Terrain Model (DTM), giving body radius as a function of Cartographic latitude and
longitude in a sinusoidal equal-area projection, is the standard. Mars is to be an exception where
Planetographic latitude is to be used. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of Cartographic coordinates are to be supported.

The Digital Image Model (DIM) giving body "brightness" in a specified spectral band or bands
as a function of Cartographic latitude and longitude in a sinusoidal equal-area projection, and
associated with the surface radius values in the DTM, is the standard. Mars is to be an exception
where Planetographic latitude is to be used. DIMs registered to spheroids, ellipsoids and
harmonic expansions are to be supported.

2.6 Map Resolution

The suggested spatial resolution of a map is 1 / 2n degrees. The suggested vertical resolution is 1
x 10m meters, with m and n chosen to preserve all the resolution inherent in the data.

Chapter 2. Cartographic Standards 2-5

2.7 References

The following references give more detail on the cartographic data standards:

Davis, M. E., et al (1991) "Report of the IAU/IAG/COSPAR Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and Satellites: 1991," Celestial Mechanics,
53, 377-397.

Batson, R.M., (1987) "Digital Cartography of the Planets: New Methods, its Status and Future",
Photogrammetric Engineering & Remote Sensing, 53, 1211-1218.

Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

Chapter 3. Data Type Definitions 3-1

Chapter 3

Data Type Definitions

Each PDS-archived product is described using label objects that provide information about the
data types of stored values. The data elements DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE appear together with related data elements that provide starting location and
applicable length information for specific data fields. Within all PDS data object definitions, the
byte, bit, and record positions are counted from left to right, or first to last encountered,
beginning with 1.

Data values may be represented within data files as ASCII or BINARY format. The ASCII
storage format is simpler to transfer between different hardware systems and often between
different application programs on the same computer. However, strictly numeric data often are
stored in binary numeric types, since the ASCII representation of most numeric values requires
more storage space than does the binary format. For example, each 8-bit pixel value in an image
file would require 3 bytes if stored in ASCII format.

3.1 Data Elements

Table 3.1 identifies the data elements that provide data type, location, and length information
according to the objects in which they appear.

3.2 Data Types

Table 3.2 identifies the valid values that may appear for the DATA_TYPE, BIT_DATA_TYPE,
and SAMPLE_TYPE data elements (or their aliases) in PDS data object definitions. Many of the
values in this table have been aliased to other values. Providing aliases allows the PDS to
support and maintain backward compatibility. However, the preferred method is to use the value
rather than its alias.

Unless noted as ASCII, all values in the table are binary.

3-2 Chapter 3. Data Type Definitions

Table 3.1: Data-Type-Related Elements Used in Data Label Objects

Data Object Data Elements Notes

COLUMN DATA_TYPE

(without ITEMS) START_BYTE

BYTES

COLUMN DATA_TYPE ITEM_TYPE is an alias

(with ITEMS) START_BYTE

BYTES (opt) total bytes in COLUMN

ITEMS

ITEM_BYTES size for each ITEM

BIT_COLUMN BIT_DATA_TYPE

(without ITEMS) START_BIT

BITS

BIT_COLUMN START_BIT

(with ITEMS) BITS (opt) Total bits in BIT_COLUMN

ITEMS

ITEM_BITS size for each ITEM

IMAGE SAMPLE_TYPE

SAMPLE_BITS

HISTOGRAM DATA_TYPE ITEM_TYPE is alias

BYTES (opt) total bytes in HISTOGRAM

ITEMS

ITEM_BYTES size for each ITEM (bin)

Chapter 3. Data Type Definitions 3-3

Table 3.2: PDS Standard Data Types

Data Element Usage Codes:

D = DATA_TYPE
B = BIT_DATA_TYPE
S = SAMPLE_TYPE

Data Element

Usage Value Description

D ASCII_REAL ASCII character string representation of real number

D ASCII_INTEGER ASCII character string representation of integer

D ASCII_COMPLEX ASCII character string representation of complex

D BIT_STRING alias for MSB_BIT_STRING

D, B BOOLEAN True/False indicator; 1, 2, or 4 byte unsigned number

or 1-32 bit number; all 0's False; anything else True

D CHARACTER any ASCII character string

COMPLEX alias for IEEE_COMPLEX

D DATE ASCII character string representation of PDS date

D EBCDIC_CHARACTER any EBCDIC character string

FLOAT alias for IEEE_REAL

D IBM_COMPLEX IBM 360/370 mainframe complex number (8,16 byte)

D IBM_INTEGER IBM 360/370 mainframe 1, 2, and 4 byte numbers

D IBM_REAL IBM 360/370 mainframe real number (4 and 8 byte)

D IBM_UNSIGNED_INTEGER IBM 360/370 mainframe 1, 2, and 4 byte numbers

D IEEE_COMPLEX includes 8, 16, and 20 byte complex numbers

D, S IEEE_REAL includes 4, 8 and 10 byte real numbers

D INTEGER Single byte integers only

INTEGER alias for MSB_INTEGER (2+ bytes)

D LSB_BIT_STRING includes 1, 2, and 4 byte columns containing bit

columns

D, S LSB_INTEGER includes 1, 2, and 4 byte numbers

D, S LSB_UNSIGNED_INTEGER includes 1, 2, and 4 byte numbers

MAC_COMPLEX alias for IEEE_COMPLEX

MAC_INTEGER alias for MSB_INTEGER

MAC_REAL alias for IEEE_REAL

MAC_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D MSB_BIT_STRING includes 1, 2, and 4 byte columns containing bit

columns

3-4 Chapter 3. Data Type Definitions

D, B MSB_INTEGER includes 1, 2, and 4 byte numbers

D, B, S MSB_UNSIGNED_INTEGER includes 1, 2, and 4 byte numbers, and 1-32 bit

numbers

D, B N/A Used for spare (or unused) fields, if identified

D PC_COMPLEX includes 8, 16, 20 byte complex numbers

PC_INTEGER alias for LSB_INTEGER

D PC_REAL includes 4, 8, and 10 byte real numbers

PC_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER

REAL alias for IEEE_REAL

SUN_COMPLEX alias for IEEE_COMPLEX

SUN_INTEGER alias for MSB_INTEGER

SUN_REAL alias for IEEE_REAL

SUN_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER

D TIME ASCII character string representation of PDS date/time

UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER (2+bytes)

D, B, S UNSIGNED_INTEGER single byte numbers, or 1-32 bit numbers

VAX_BIT_STRING alias for LSB_BIT_STRING

D VAX_COMPLEX includes D, F, and H type complex numbers

VAX_DOUBLE alias for VAX_REAL

VAX_INTEGER alias for LSB_INTEGER

D, S VAX_REAL includes D (8 byte), F (4 byte), and H (16 byte) type

real numbers

VAX_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER

D VAXG_COMPLEX G type complex numbers only

D VAXG_REAL G type (8 byte) real numbers only

3.3 Binary Integers

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields.
These are the most-significant-byte first (MSB) and least-significant-byte first (LSB)
architectures. The MSB architectures are used on IBM mainframes, many UNIX minicomputers
(SUN, Apollo) and Macintosh computers. The LSB architectures are used on VAX systems and
IBM PCs. The default interpretation for PDS labeled data is the MSB architecture, and non-
specific data types (e.g. UNSIGNED_INTEGER) are aliased to MSB types. Therefore, files
written on VAX or IBM PC hosts must specify LSB data types for binary integer fields, or use
the appropriate aliases.

3.4 Signed versus Unsigned

The PDS default binary integer is a signed value in 2's complement notation. Therefore, a data
type specified as INTEGER is interpreted as a signed integer. Unsigned binary integers must be
identified using a valid UNSIGNED_INTEGER data type from Table 3.2.

Chapter 3. Data Type Definitions 3-5

3.5 Floating Point Formats

The PDS default representation for floating point numbers is in ANSI/IEEE standard. This
representation is defined as the PDS IEEE_REAL data type, and aliases are identified in Table
3.2. Several specific floating point representations are supported by PDS, and are further
described in Appendix C.

3.6 Bit String Data

A BIT_STRING data type is used for COLUMNs to hold individual bit field values. Each bit
field is defined in a BIT_COLUMN object. A BIT_STRING data type can be a 1, 2, or 4 byte
field, much like a binary integer. Extraction of specific bit fields within a 2 or 4 byte
BIT_STRING is dependent on the host architecture (MSB or LSB), and follows the binary
integer specifications identified in Section 3.3 above. In interpreting bit fields (BIT_COLUMNS)
within a BIT_STRING, any necessary conversions (byte swapping from LSB to MSB) are done
first, and then bit field (START_BIT, BITS) values are used to extract the appropriate bits. This
will assure that bit fields are not fragmented due to differences in hardware architectures.

3.7 Format Specifications

The data format specification is used to determine the format for display of a data value.
The following FORTRAN data format specifications will be used:

Aw Character data value.
Iw Integer value.
Fw.d Floating point value, displayed in decimal format.
Ew.d[Ee] Floating point value, displayed in exponential format.
Where:

w= Total number of positions in the output field (including sign, decimal point or “E”).
d= Number of positions to the right of the decimal point.
e= Number of positions in exponent length field.

3.8 Internal Representations of Data Types

Appendix C contains the detailed internal representation of the PDS standard data types listed in
Table 3.2.

PDS has developed tools that are designed to use the specifications outlined in Appendix C for
interpreting data values for display and validation.

Chapter 4. Data Products 4-1

Chapter 4

Data Products

A data product is a grouping of primary and secondary data objects and their associated PDS
labels resulting from a scientific observation. Three examples of a data product are a PDS
labeled image, a spectrum, and a time series table. A data product is a component of a data set
(see the Data Set/ Data Set Collection Contents and Naming chapter of this document).

Each data product is made up of one or more primary data objects, secondary data objects, and
PDS data product labels.

Primary Data Object
A Primary data object is a grouping of data results from a scientific observation. The actual
science data, such as an image or table, represents the measured instrument parameters.

Secondary Data Object
A Secondary data object is any data needed for processing or interpreting the primary data
object. Each primary data object may have one or more associated secondary data objects. An
example of a secondary data object is a histogram derived from an image.

A PDS data product label, expressed in Object Description Language (ODL) (see the Object
Description Language (ODL) Specification and Usage chapter of this document), identifies,
describes and defines the structure of the data. There may be a single label to describe the data
product, or separate labels for each data object.

4.1 Data Product File Configurations

The grouping of primary and associated secondary data objects and their PDS label(s) into one or
more physical files can be done in a variety of ways. An important consideration in choosing a
file organization scheme for a data product is the intended use of the PRODUCT_ID data
element. The PRODUCT_ID uniquely identifies an individual data product and can be based on
physical file names.

Example:
An image (the data product in this example) is a color triplet having three primary data objects, stored in separate

physical files, one for each of the red, blue, and green images. Each is uniquely identified by a PRODUCT_ID, additionally they
are logically associated through the IMAGE_ID data element.

for the red image:
PRODUCT_ID = "22A190-RED"
IMAGE_ID = "22A190"

4-2 Chapter 4. Data Products

for the blue image:
PRODUCT_ID = "22A190-BLUE"
IMAGE_ID = "22A190"

for the green image:
PRODUCT_ID = "22A190-GREEN"
IMAGE_ID = "22A190"

Figure 4.1 illustrates file configurations for a data product with a single data object.

Figure 4.1 Data Product with a Single Data Object

For a data product having multiple data objects (one or more primary data objects and one or
more secondary data objects), the assignment of the PRODUCT_ID is identified within the label
of the data product file(s).

Figure 4.2 shows five possible file configurations for a single data product that consists of two
data objects, a primary and secondary data object. Similar examples could be made using data
products composed of several primary data objects.

Note that the use of options (2) and (4) would require a logical linking by another identification
data element in each label.

Chapter 4. Data Products 4-3

Figure 4-2. Data Product with Multiple Data Objects

Chapter 5. Data Product Labels 5-1

Chapter 5

Data Product Labels

PDS data product labels are required for describing the contents and format of each individual
data product within a data set. PDS data product labels are written in the Object Description
Language (ODL). The PDS has chosen to label the wide variety of data products under archival
preparation by implementing a standard set of data object definitions, data elements, and
standard values for the elements. These data object definitions, data elements, and standard
values are defined in the Planetary Science Data Dictionary (PSDD). Appendix A of this
document provides general descriptions and examples of the use of these data object definitions
and data elements for labeling data products.

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format of each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product label is embedded at the beginning of the data product file.
There is one label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which points to the data product file. There is one detached label file for every data product file.
The label file should have the same base name as its associated data file, but the extension .LBL .

Combined Detached - A single PDS detached data product label file is used to describe the
contents of more than one data product file. The combined detached label points to individual
data products.

NOTE: Although all three labeling methods are equally acceptable, the PDS tools do not
currently support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

5-2 Chapter 5. Data Product Lables

Figure 5.1 Attached, Detached, and Combined Detached PDS Labels

Chapter 5. Data Product Labels 5-3

5.1.2 Label format

PDS recommends that labels have stream record format, and line lengths of at most 80 characters
(inclusive of the CR/LF line terminators) so that the entire label can be seen on a computer
screen without horizontal scrolling. The Carriage Return and Line Feed (CR/LF) pair is the
required line terminators for all PDS labels. (See the Record Formats chapter of this document.)

All values in a PDS label should be in upper case, except values for description fields. It is also
recommended that the equal signs in the labels be aligned for ease of reading.

ASCII Character Set
All values in a PDS label must conform to the standard ASCII character set. These values
include the range of characters 001 through 127 (decimal). The character set 128-255 is not used
in PDS because these characters vary by font / symbol set and are not predictable when viewed
and/or printed. Similarly, TAB characters are not to be used as they are interpreted differently
by different applications. Each TAB character represents ’n’ number of SPACE characters and
’n’ will vary by application thereby causing nicely formatted tables/columns to become
misaligned.

Label Padding
For a fixed length data file with an attached label, the label is padded with SPACEs (ASCII
decimal 32) in one of the following ways:

1) Spaces are added after the label’s END <CR><LF> statement and before the data so that the
total size of the label is an integral multiple of the record length of the data.

Example:
In the example below, the label portion of the file is 7 x 324 = 2268 bytes in length, including blank fill between the
END<CR><LF> statement and the first byte of data. The actual data portion of the file starts at record 8 (i.e., the 1st byte of the
8th record starts at byte (7 x 324)+1 = 2269)

RECORD_TYPE = FIXED_LENGTH<CR><LF>
RECORD_BYTES = 324<CR><LF>
FILE_RECORDS = 334<CR><LF>
LABEL_RECORDS = 7<CR><LF>

^IMAGE = 8<CR><LF>

END<CR><LF>
....blank fill....
data

2) Each line in the label may be padded with SPACEs so that each line in the label has the same
record length as the data file. In this case, the label line length may exceed the recommended 80
characters.

Example:
In the example below, the label portion of the file is 80 x 85 = 6800 bytes in length. Each line in the label portion of the file is 85
bytes long, the same length as each data record. Notice the blank space between the actual values in the label and the line
delimiters. In the example, the label is 80 lines long (i.e., 80 records long) and the data begins at record 81. Note that the label is
padded so that <CR><LF> are in bytes 84 and 85.

5-4 Chapter 5. Data Product Lables

RECORD_TYPE = FIXED_LENGTH <CR><LF>
RECORD_BYTES = 85 <CR><LF>
FILE_RECORDS = 300 <CR><LF>
LABEL_RECORDS = 80 <CR><LF>
...
^TABLE = 81 <CR><LF>
END <CR><LF>
data

5.2 Data Product Label Content

5.2.1 Attached and Detached Labels

PDS data product labels have a general structure that is used for all attached and detached labels,
except for data products described by minimal labels. (Minimal labels are described in Section
5.2.3.)

• LABEL STANDARDS identifier
• FILE CHARACTERISTIC data elements
• DATA OBJECT pointers
• IDENTIFICATION data elements
• DESCRIPTIVE data elements
• DATA OBJECT DEFINITIONS
• END statement

Figure 5.2 provides an example of how this general structure appears in an attached or detached
label for a data product file containing multiple data objects.

Chapter 5. Data Product Labels 5-5

Figure 5.2 PDS Attached / Detached Label Structure

5-6 Chapter 5. Data Product Lables

5.2.2 Combined Detached Labels

For the Combined Detached label option, the general label structure is modified slightly to
explicitly reference each individual file within its own FILE object. In addition, identification
and descriptive data elements that apply to all of the files can be located before the FILE objects.

• LABEL STANDARDS identifiers
• IDENTIFICATION data elements that apply to all referenced data files
• DESCRIPTIVE data elements that apply to all referenced data files
• OBJECT=FILE statement (Repeats for each data product file)

• FILE CHARACTERISTIC data elements
• DATA OBJECT pointers
• IDENTIFICATION data elements
• DESCRIPTIVE data elements
• DATA OBJECT DEFINITION

• END_OBJECT=FILE statement
• END statement

Figure 5.3 provides an example of how this general structure appears in a combined detached
label that describes more than one data product file.

Chapter 5. Data Product Labels 5-7

Figure 5.3 PDS Combined / Detached PDS Label Structure

5-8 Chapter 5. Data Product Lables

5.2.3 Minimal Labels

Use of the minimal label option is only allowed when the format of the data cannot be supported
by the current documented Data Objects.

For minimal labels, the general label structure has removed the required use of data objects. A
minimal label does not contain any PDS data object definitions or pointers to data objects. The
above applies to both attached and detached labels.

Minimal labels must satisfy the following requirements:

(1) Provide the ability to locate the data (file) associated with the label.

1a. Attached labels

Since data objects and pointers are not required in the minimal label, by definition
the data follows immediately after the label.

1b. Detached Labels

Both the implicit and explicit use of the FILE object are supported. The
FILE_NAME keyword, contained in the FILE object, is required.

(2) Provide the ability to locate a description of the format/content of the data. One of the
following must be provided in the minimal label:

2a. ^DESCRIPTION = “<filename>”
This is a pointer to a file containing a detailed description of the data format; may
be located in the same directory as the data or in the DOCUMENT subdirectory.

2b. DESCRIPTION = “<text appears here>”
This is either a detailed description of the data file, its format, data types,and use,
or it is a reference to a document available externally, e.g., a Software Interface
Specification (SIS) or similar document.

(3) When minimal labels are used, DATA_OBJECT_TYPE = FILE should be used in the
Data Set Catalog template. If a situation arises where multiple Data Object types are
used, then
separate Data Set Catalog templates should be provided for each data product. And,
where appropriate, use a Data Set Collection template.

5.2.3.1 Implicit File Object (Attached and Detached Minimal Label)

The general structure for minimal labels with implicit file objects is as follows:

• LABEL STANDARDS identifier

Chapter 5. Data Product Labels 5-9

• FILE CHARACTERISTIC data elements
• IDENTIFICATION data elements
• DESCRIPTIVE data elements
• END statement

5.2.3.2 Explicit File Object (Detached Minimal Label)

The general structure for minimal labels with explicit file objects is as follows:

• LABEL STANDARDS identifier
• IDENTIFICATION data elements
• DESCRIPTIVE data elements
• OBJECT=FILE statement

• FILE CHARACTERISTIC data element

• END_OBJECT=FILE
• END statements

Figure 5.4 provides an example of how this general structure appears in a detached minimal
label. In this example, an implicit FILE object is used.

5-10 Chapter 5. Data Product Lables

Figure 5.4 PDS Detached Minimal Label Structure

5.3 Detailed Label Contents Description

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers,
identification data elements, descriptive data elements, data object definitions, and the END
statement.

Chapter 5. Data Product Labels 5-11

5.3.1 Label Standards Identifiers

Each PDS label begins with an optional Standard Formatted Data Unit (SFDU) label and a
PDS_VERSION_ID data element:

 CCSD.... [optional SFDU label]
 PDS_VERSION_ID

The PDS does not require SFDU labels on individual products, but they may be needed for
conformance with specific project or other agency requirements. If SFDUs are provided on a
data product, they must follow the standards described in the SFDU Usage chapter in this
document.
The PDS requires the PDS_VERSION_ID data element to identify the PDS published standards
that the label adheres to. This version id will be used to provide PDS software tool support for a
specific set of standards and will allow the evolution and expansion of both standards and tools
as required by the PDS user community.

For labels adhering to the standards described in this document -- the PDS Standards Reference,
Version 3.3 -- and its associated Planetary Science Data Dictionary, Version 3.0, this will be:

PDS_VERSION_ID = PDS3

5.3.2 File Characteristic Data Elements

PDS data product labels contain data element information that describes important attributes of
the physical structure of a data product file. The PDS file characteristic data elements are:

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TYPE data element identifies the record characteristics of the data product file. A
complete discussion of the RECORD_TYPE data element and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BYTES data element identifies the number of bytes in each physical record in the
data product file. The FILE_RECORDS data element identifies the number of physical records
in the file. The LABEL_RECORDS identifies the number of physical records that make up the
PDS product label.

Not all of these data elements are required in every data product label. Table 5.1 lists the
required (Req) and optional (Opt) file characteristic data elements for a variety of data products
and labeling methods for both attached (Att) and detached (Det) labels. Where (max) is
specified, the value indicates the maximum size of any physical record in the file.

5-12 Chapter 5. Data Product Lables

Table 5.1: File Characteristic Data Element Requirements

Labeling Method Att Det Att Det Att Det Att Det
RECORD_TYPE FIXED_LENGTH VARIABLE_LENGTH STREAM UNDEFINED
RECORD_BYTES Req Req Rmax Rmax Omax - - -
FILE_RECORDS Req Req Req Req Opt Opt - -
LABEL_RECORDS Req - Req - Opt - - -

Note: For detached minimal labels, the FILE_NAME keyword is required.

5.3.3 Data Object Pointers

The actual data whose structure and attributes are defined in a PDS label are “data objects”. Each
data product file may contain one or more data objects.

The PDS uses a pointer mechanism within product labels to identify the starting locations for all
primary and secondary data objects in a data product.

Examples of primary data objects that may require data object pointers include:

TABLE
IMAGE
SERIES
SPECTRUM
QUBE

Examples of secondary data objects that may require data object pointers include:

HISTOGRAM
PALETTE
HEADER
DOCUMENT

5.3.3.1 Use of Pointers in Attached Labels

For attached labels, if there is only one data object referenced, a data object pointer is not
required. However, it is strongly recommended that data object pointers be used at all times. The
data object is assumed to start in the next physical record after the PDS product label area. This
is commonly the case with ASCII text files described by a TEXT object and ASCII SPICE files
described by a SPICE_KERNEL object. The top two illustrations in Figure 5.5 show example
files that do not require data object pointers.

If multiple data objects are stored in the data product file, object pointers are required for all data

Chapter 5. Data Product Labels 5-13

objects. The syntax for data object pointers in attached labels may take one of two forms:

 ^<object_identifier> = nnn (see the Object Description Language chapter in this document)

 where nnn represents the starting record number within the file,
 Or,

 ^<object_identifier> = nnn <BYTES>

 where nnn represents the starting byte location within the file.

The following two illustrations in Figure 5.5 show the required use of data object pointers for
attached label products containing multiple data objects.

Figure 5.5 Data Object Pointers-Attached Labels

5.3.3.2 Use of Pointers in Detached and Combined Detached Labels

If the PDS data product label is a detached or a combined detached label, data object pointers are
required for all data objects referenced.

5-14 Chapter 5. Data Product Lables

The syntax for data object pointers may take one of three forms:

(1) ^object_identifier = “filename”
(2) ^object_identifier = (“filename”, nnn)
(3) ^object_identifier = (“filename”, nnn <BYTES>)

With respect to these three cases, these object pointers reference either byte or record locations in
data files that are detached, or separate from, the label file.

In each case, the filename is the name of the file containing the data object and is detached, or
separate from, the label file. In the first case, the data object is located at the beginning of the
referenced file. In the second case, the data object begins nnn physical records from the
beginning of the referenced file. In the third case, the data object begins nnn bytes from the
beginning of the referenced file.

^QUBE = ("DATA.DAT")
^ENGINEERING_TABLE = ("DATA.DAT", 10)
^TABLE = ("DATA.DAT", 10 <BYTES>)

Figure 5.6 illustrates several examples of data object pointer usage for data product files with
detached or combined detached labels. The top example shows a data product consisting of a
HEADER data object and a TABLE data object together in a single file. The detached label for
this product includes pointers for both data objects, with the TABLE object starting at byte 601
of file A. The middle example illustrates a combined detached label for a data product contained
in two data objects, each in a separate file. A separate pointer is provided for each data object.
The bottom example shows a detached label for a data product containing multiple data objects.

Where multiple data objects are stored within a data product file, and where multiple data objects
occupy portions of the same physical record, the data object pointer indicates the first physical
record containing the data object. Additional data elements within the Data Object Definitions
(e.g. LINE_PREFIX_BYTES, ROW_SUFFIX_BYTES) provide the relative byte locations
within each record for each line or row of data within the data object.

5.3.3.3 Note Concerning Minimal Attached and Detached Labels

By definition, data object pointers do not exist in minimal labels. The format of the data is fully
described in a separate file or document.

Chapter 5. Data Product Labels 5-15

Figure 5.6 Data Object Pointers – Detached & Combined Labels

5.3.4 Identification Data Elements

The identification data elements provide important information about the data to uniquely
identify the data product and to associate it with other data products that may be related. This
information is often used to populate the PDS product level catalogs or inventories. PDS requires
a minimum set of these identification data elements to be included in all product labels. These
requirements vary depending on the type of data product being archived. Additional identifying
data elements may be required by specific projects or organizations.

Additional data elements which might be needed to further identify the data objects or which
would be needed to catalog the data product to support potential search criteria should also be
included. These additional data elements are selected from the Planetary Science Data
Dictionary (PSDD).

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it can be proposed to be added to the dictionary. See a PDS Data Engineer for assistance.

5-16 Chapter 5. Data Product Lables

5.3.4.1 Spacecraft Science Data Products

The following identification data elements shall be included in data product labels for all
spacecraft science data products:

 DATA_SET_ID
 PRODUCT_ID
 INSTRUMENT_HOST_NAME
 INSTRUMENT_NAME
 TARGET_NAME
 START_TIME
 STOP_TIME
 SPACECRAFT_CLOCK_START_COUNT
 SPACECRAFT_CLOCK_STOP_COUNT
 PRODUCT_CREATION_TIME

5.3.4.2 Earthbased Science Data Products

The following identification data elements shall be included in data product labels for all
earthbased science and radio science data products:

 DATA_SET_ID
 PRODUCT_ID
 INSTRUMENT_HOST_NAME
 INSTRUMENT_NAME
 TARGET_NAME
 START_TIME
 STOP_TIME
 PRODUCT_CREATION_TIME

5.3.4.3 Ancillary Data Products

The following identification data elements shall be included in data product labels for all
ancillary data sets. These types of products may be more general in nature, supporting a wide
variety of instruments for a particular mission. For example, SPICE data sets, general
engineering data sets, and uplink data are considered ancillary data products.

 DATA_SET_ID
 PRODUCT_ID
 PRODUCT_CREATION_TIME

The following data elements are highly recommended, and should be included in ancillary data
products whenever they apply:

INSTRUMENT_HOST_NAME
 INSTRUMENT_NAME
 TARGET_NAME
 START_TIME
 STOP_TIME
 SPACECRAFT_CLOCK_START_COUNT
 SPACECRAFT_CLOCK_STOP_COUNT

Chapter 5. Data Product Labels 5-17

5.3.5 Descriptive Data Elements

In addition to the identification data elements required for various types of data, PDS strongly
recommends including additional data elements related to specific types of data. These
descriptive data elements must include any data elements which might be needed to interpret or
process the data objects or which would be needed to catalog the data product to support
potential search criteria at the product level.

Not only will these values be available with the data to the user, but they are also used to load
PDS product level catalogs and inventories with descriptive information about each data product.
PDS product level catalogs and inventories at PDS Discipline Nodes support both online data
product access and ordering capabilities.

In addition, PDS has developed and continues to develop software display and analysis packages
for standard data objects. These software packages will be built to utilize various descriptive data
elements.

Recommendations for descriptive data elements to consider supplying will come from working
with PDS Mission Interface personnel as well as the data producer's own suggestions. These
additional data elements are selected from the Planetary Science Data Dictionary.

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it can be proposed to be added to the dictionary. See the PDS Data Engineer for
assistance with submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in a PDS label to provide a shorthand method for including a set of
descriptive data elements (e.g., ^DESCRIPTION) or a long descriptive text passage referenced in
several data product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within a product label for describing the
structure and associated attributes of each data object in the data product. There will be one data
object definition for every primary and secondary data object pointer identified in Section 5.2.3.
These data object definitions are of the form:

 OBJECT = aaa where aaa is the name of the data object
 ...
 END_OBJECT = aaa

The PDS has designed a set of standard data object definitions to be used for labeling data
products. Among these standard objects are those designed to describe data structures commonly
used for scientific data storage. Appendix A provides a complete set of PDS data object
definition requirements, along with examples of data product labels.

Pointers are sometimes used in a PDS label to provide a shorthand method for including a set of
data sub-objects referenced in several data product labels. For example, a ^STRUCTURE is

5-18 Chapter 5. Data Product Lables

often used to include a set of COLUMN sub-objects for a TABLE structure that is used in many
labels.

NOTE: Minimal labels do not contain any data object definitions.

5.3.7 End Statement

The end of the PDS label is identified by the required END statement followed by an optional
SFDU.

The PDS does not require SFDU labels on individual products, but they may be required to
conform with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.
In some, but not all cases, another SFDU label is required after the PDS END statement to
provide “end label” and sometimes “start data” information.

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-1

Chapter 6

Data Set/Data Set Collection Contents and Naming

One of the objectives of the PDS is to introduce consistency in the contents, organization and
naming of planetary data sets. The PDS has introduced the concept that an archive quality data
set collection or data set must include everything that is needed to understand and utilize the
data. Towards this goal, the PDS has worked with the PDS Discipline Nodes, numerous Flight
Projects, individual scientists and programmers, and the NSSDC to develop approaches to ensure
that this consistency is achieved.

Figure 6.1 shows the relationships between Data Set Collection, Data Sets, and Data Products.
Figure 6.2 shows the logical and physical relationships.

Figure 6.1 Data Set Collection, Data Sets, and Data Products

6-2 Chapter 6. Data Set / Data Set Collection Contents and Naming

Figure 6.2 Logical and Physical Relationships of Data Products

6.1 Data Set/Data Set Collection Contents

Data Set Collection and Data Set defined:

Data Set Collection - A data set collection consists of data sets that are related by observation
type, discipline, target, or time, and therefore are to be treated as a unit, to be archived and
distributed as a group (set) for a specific scientific objective and analysis. One of the primary
considerations in creating a data set collection is that the collection as a whole provides more
utility than any individual data set within the collection. Further, the individual data set(s) may
be ineffective unless used in concert with the other data sets in the collection.

Data Set - The accumulation of data products, secondary data, software, and documentation, that
completely document and support the use of those data products. A data set can be part of a data
set collection.

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-3

A data set collection or a data set may include all of the following:

Data Product - A labeled grouping of data resulting from a scientific observation. Examples of
data products include planetary images, spectrum tables, and time series tables. A data product is
a component of a data set.

Calibration data - Calibration files used in the processing of the raw data or needed to use the
data.

Geometry data - Relevant files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.

Documentation - All the textual material which describes the mission, spacecraft, instrument,
and data set. This can include references to science papers, or the actual papers.

Catalog Information - High-level descriptive information about a data set (e.g. mission
description, spacecraft description, instrument description), expressed in Object Description
Language (ODL) which is suitable for loading into a catalog.

Index Files - Information which allows the user to locate the data of interest, such as a table
mapping latitude/longitude ranges to file names.

Data Dictionary Information - A portable version of the Planetary Science Data Dictionary
which is pertinent to the data set. The dictionary is expressed in ODL.

Gazetteer - Information about the named features on a target body associated with the data sets.

Software- The software libraries, utilities, or application programs to access/process the data
objects.

All data sets submitted to the PDS shall include the software used and/or algorithms for original
data reduction, processing, calibration and, decalibration of the data, or documentation stating
how to obtain such software. When software accompanies a data set, the source code, build
instructions, and software documentation shall be included.

There are several other types of data set software which may be provided with a data set:

1. Special software which is developed and maintained for certain hardware platforms. This
is often a refined version of the processing software developed for mission data analysis.

2. Utilities which allow a user to select parameters from the data set and to extract these
parameter values to a data file based on certain key values (event time, for example). The output
format should be a simple ASCII table or one of the other generic PDS data object formats. This
is a minimum level of access for conducting a peer review of a data set.

6-4 Chapter 6. Data Set / Data Set Collection Contents and Naming

3. Data analysis tools such as plotting programs.

6.2 Data Set Naming and Identification

This standard contains instructions for naming a PDS data set and forming a Data Set Identifier.
Every PDS data set shall be given a DATA_SET_NAME and DATA_SET_ID, both formed
from seven components. All components are required except for the Data Set Type and
Description components. These components are described in section 6.4.

The only characters allowed within a data_set_id are the upper case alphanumeric set (A-Z, 0-9),
a forward slash (/), a period (.), and a hyphen (-). The period is only used with numerics, i.e.,
V1.0 or 12.5SEC. No other special characters are allowed (e.g., underscore (_)).

Multiple instrument hosts, instruments, or targets shall be referenced in a DATA_SET_NAME
or DATA_SET_ID by concatenation of the values with a forward slash (/) which is interpreted as
“and.”

The data set identifier (DATA_SET_ID) shall not exceed 40 characters in length. Each
component shall be the acronym rather than a full length name used in forming the
DATA_SET_NAME. Within the data_set_id, acronyms shall be separated by hyphens.(See
section 6.4 for valid acronyms.)

A DATA_SET_NAME shall not exceed 60 characters in length. Where the character limitation
is not exceeded, the full length name of each component should be used. If the full length name
is too long, an acronym shall be used to abbreviate components of the name. (See section 6.4 for
valid full length names and acronyms.)

The intent of the data set name (DATA_SET_NAME) and identifier (DATA_SET_ID) is
primarily to uniquely identify the data set.

The components of the DATA_SET_NAME and DATA_SET_ID are:

Instrument host
Target
Instrument
Data processing level number
Data set type (optional)
Description (optional)
Version numbe r

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-5

Example:

• Full length data set name: Mariner 9 and Viking Orbiter 1 and Viking Orbiter 2 Mars Imaging Science Subsystem and Visual
Imaging Subsystem derived cloud data Version 1.0

• DATA_SET_NAME = “MR9/V01/V02 MARS IMAGING SCIENCE SUBSYSTEM/VIS 5 CLOUD V1.0”

• DATA_SET_ID = “MR9/V01/V02-M-ISS/VIS-5-CLOUD-V1.0”

In this example, Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2
 Target is Mars
 Instruments are the Imaging Science Subsystem and Visual Imaging Subsystem
 Data Processing Level number is 5
 Description is CLOUD
 Version number is V1.0
 The optional Data set type is not used in this example.

6.3 Data Set Collection Naming and Identification

This standard contains instructions for naming a PDS data set collection and forming an
identifier. A data set collection consists of data sets that are related by observation type,
discipline, target, or time (which are treated as a unit), for a specific scientific purpose.

A data set collection will contain data sets that may cover several targets, be of different
processing levels, and have different instrument hosts and instruments. Since the individual data
sets will be identified by their own data set names, some of this information is not necessary to
repeat at the collection level. Therefore, the DATA_SET_COLLECTION_NAME uses a subset
of the DATA_SET_NAME components in addition to a new component, collection name, which
identifies the group of related data sets.

The DATA_SET_COLLECTION_NAME and DATA_SET_COLLECTION_ID are formed
from the six components listed below. All are required, except for data processing level number,
data set type, and description. However, it is recommended that data set type or description be
used whenever possible.

The only characters allowed within a DATA_SET_COLLECTION_ID are the upper case
alphanumeric set (A-Z, 0-9), a forward slash (/), a period (.), and a hyphen (-). The period is
only used with numerics, i.e., V1.0 or 12.5SEC. No other special characters are allowed (e.g.,
underscore (_)).

Multiple targets or data processing levels shall be referenced in the data set collection name or
identifier by concatenation of the values with a forward slash (/) which is interpreted as “and.”

A DATA_SET_COLLECTION_NAME shall not exceed 60 characters in length. Where the
character limitation is not exceeded, the full length name of each component should be used. If
the full length name is too long, an acronym shall be used to abbreviate it. (See Section 6.4 for
valid full length names and acronyms.)

6-6 Chapter 6. Data Set / Data Set Collection Contents and Naming

The DATA_SET_COLLECTION_ID shall not exceed 40 characters in length. Each component
shall be the acronym rather than a full length name used in forming the
DATA_SET_COLLECTION_NAME. Within the DATA_SET_COLLECTION_ID, acronyms
shall be separated by hyphens. (See Section 6.4 for valid acronyms.)

The components of the DATA_SET_COLLECTION_NAME and
DATA_SET_COLLECTION_ID are:

Collection name
Target
Data processing level number (optional)
Data set type (optional)
Description (optional)
Version number

Example:
The Pre-Magellan Data Set Collection contains radar and gravity data similar to the kinds of data that Magellan collected and
was used for pre-Magellan analyses of Venus and for comparisons to actual Magellan data.

• Full-length data set collection name: Pre-Magellan Earth, Moon, Mercury, Mars, and Venus Resampled and Derived Radar and
Gravity Data Version 1.0

• DATA_SET_COLLECTION_NAME = “PRE-MAGELLAN E/L/H/M/V 4/5 RADAR / GRAVITY DATA V1.0”

• DATA_SET_COLLECTION_ID = “PREMGN-E/L/H/M/V-4/5-RAD/GRAV-V1.0”

6.4 Description of Name and ID Components

If the information needed to describe your data is not listed, consult the PDS Data Engineer to
determine what the appropriate acronyms are for you to use.

When a reference is made to the PSDD, see the standard values list for the data elements.

1. Instrument host component valid values are:
full length names: INSTRUMENT_HOST_NAME data element in the PSDD
acronyms: INSTRUMENT_HOST_ID data element in the PSDD
exceptions: for Earth based data sets with no instrument host defined, the default

value of EAR is recommended.

2. Collection name component valid values may be one of the following:

GRSFE Geological Remote Sensing Field Experiment
IHW International Halley Watch
PREMGN Pre-Magellan

3. Target component valid values are:

full length names: TARGET_NAME data element in the PSDD
 acronyms: one of the following target IDs

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-7

Target ID Target Name

A Asteroid
C Comet
CAL Calibration
D Dust
E Earth
H Mercury
J Jupiter
L Moon
M Mars
MET Meteorite
N Neptune
P Pluto
R Ring
S Saturn
SA Satellite
SS Solar System
U Uranus
V Venus
X Other, ex. Checkout
Y Sky

NOTE: Satellites or rings shall be referenced in a DATA_SET_NAME and DATA_SET_ID by
the concatenation of the satellite or ring identifier with the associated planet identifier; for
example:

JR = Jupiter's rings
JSA = Jupiter's satellites

If Jupiter data are also included in the ring and/or satellite data set, then only Jupiter, J, is
referenced as the target.

In cases where there are data sets of comets or asteroids this component represents the
TARGET_TYPE rather than the target name, for example:

A = Asteroid CAL = Calibration
C = Comet MET = Meteorite

Valid values for the TARGET_TYPE data element are found in the PSDD.

 4. Instrument component valid values are:

full length names: INSTRUMENT_NAME data element in the PSDD
acronyms: INSTRUMENT_ID data element in the PSDD
exceptions: ENG or ENGINEERING for engineering data sets

SPICE for SPICE data sets
GCM for Global Circulation Model data
SEDR for supplemental EDR data
POS for positional data

6-8 Chapter 6. Data Set / Data Set Collection Contents and Naming

5. Data processing level number

This component is the National Research Council (NRC) Committee on Data Management and
Computation (CODMAC) data processing level number.

Normally a data set contains data of one processing level. PDS recommends that data of different
processing levels be treated as different data sets. However, if it is not possible to separate the
data, then a single data set with multiple processing levels will be accepted. Use the following
when specifying the data processing level number component of the data set identifier and name:

(a) the processing level number of the largest subset of data or
(b) the highest processing level number if there is no predominant subset.

DATA LEVEL NUMBER (CODMAC AND NASA LEVELS)

Level Proc. Type Data Processing Level Description

1 Raw Data Telemetry data with data embedded.

2 Edited Data Corrected for telemetry errors and split or decommutated into a data set for a given
instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Corresponds to NASA Level 0 data.

3 Calibrated Data Edited data that are still in units produced by instrument, but that have been cor
rected so that values are expressed in or are proportional to some physical unit such
as radiance. No resampling, so edited data can be reconstructed. NASA Level 1A.

4 Resampled Data Data that have been resampled in the time or space domains in such a way that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level lB.

5 Derived Data Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

6 Ancillary Data Nonscience data needed to generate calibrated or resampled data sets. Consists of in
strument gains, offsets; pointing information for scan platforms, etc.

7 Correlative Data Other science data needed to interpret spaceborne data sets. May include ground-
based data observations such as soil type or ocean buoy measurements of wind drift.

8 User Description Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary user to extract information from
the data.

N N Not Applicable

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-9

6. Data set type

Normally, the data processing level (CODMAC) component is sufficient to be able to identify
the type or level of data. However, if additional identification is desired, this component may be
used. The following is a list of valid values (both full length names and acronyms) that may be
used for this component.

NOTE: Several of the values in this table are currently unique to a particular mission (e.g. BIDR,
MIDR were used on Magellan). These values should also be used on other missions, if deemed
appropriate.

Acronym Description

ADR Analyzed Data Record

BIDR Basic Image Data Record

CDR Composite Data Record

CK SPICE CK (Pointing Kernel)

DDR Derived Data Record
(possibly multiple instruments)

DIDR Digitalized Image Data Record

DLC Detailed Level Catalog

EDC Existing Data Catalog

EDR Experiment Data Record

EK SPICE EK (Instrument Kernel)

GDR Global Data Record

IDR Intermediate Data Record

IK SPICE IK (Instrument Kernel)

LSK SPICE LSK (Leap Second Kernel)

MDR Master Data Record

MIDR Mosaicked Image Data Record

ODR Original Data Record

PCK SPICE PCK (Planetary Constants Kernel)

PGDR Photograph Data Record

RDR Reduced Data Record

REFDR Reformatted Data Record

SDR System Data Record

6-10 Chapter 6. Data Set / Data Set Collection Contents and Naming

SEDR Supplementary Experiment Data Record

SPK SPICE SPK (Ephemeris Kernel)

SUMM Summary (data) (to be used in the browse function)

SAMP Sample data from a data set (not subsampled data)

7. Description

The following is a list of example values (both full length names and acronyms) that could be
used for this component.

While the description is optional, it allows the user to provide information to help describe the
data set, such as identifying a specific comet or asteroid.

Acronym Description

ALT/RAD Altimetry and Radiometry

BR Browse

CLOUD Cloud

ELE Electron

ETA-AQUAR Meteor Eta-Aquarius

FULL-RES Full Resolution

GIACOBIN-ZIN Comet Giacobini Zinner

HALLEY Comet Halley

ION Ion

LOS Line of Sight Gravity

MOM Moment

PAR Parameter

SA Spectrum Analyzer

SA-4.0SEC Spectrum Analyzer 4.0 second

SA-48.0SEC Spectrum Analyzer 48.0 second

Chapter 6. Data Set / Data Set Collection Contents and Naming 6-11

8. Version number

The rules for determining version numbers for PDS Data Sets/Data Set Collections are as
follows:

(a) If there is not a previous version of the PDS data set/data set collection, then use
Version 1.0.

(b) If a previous version exists, then consider the following:

i. If the data sets/data set collections contain the same set of data, but use a
different medium (e.g., CD-ROM), then no new version number is
required (i.e. no new data set identifier). The inventory system will handle
the different media for the same data set.

ii. If the data sets/data set collections contain the same set of data, but have
minor corrections or improvements such as a change in descriptive
labeling, then the version number is incremented by a tenth. For example,
V1.0 becomes V1.1.

iii. If a data set/data set collection has been reprocessed, using, for example, a
new processing algorithm or different calibration data, then the version
number is incremented by one (V1.0 would become V2.0). Also, if one
data set/data set collection contains a subset, is a proper subset, or is a
superset of another, then the version number is incremented by one.

Chapter 7. Date / Time Format 7-1

Chapter 7

Date/Time Format

PDS has adopted a subset of the International Standards Organization Standard (ISO/DIS) 8601
standard entitled “Data Element and Interchange Formats - Representations of Dates and Times”,
and applies the standard across all disciplines in order to give the system generality. See also
Dates and Times in Object Description Language (Chapter 12, Section 12.3.2) of this document.

It is important to note that the ISO/DIS 8601 standard covers only ASCII representations of dates
and times.

7.1 Date/Times

In the PDS there are two date/time formats recognized as legal:

CCYY-MM-DDTHH:MM:SS.sssZ (preferred format)
CCYY-DDDTHH:MM:SS.sssZ

Each format represents a concatenation of the conventional date and time expressions with the
two parts separated by the letter T:

CC - century (00-99)
YY - year (00-99)
MM - month (01-12)
DD - day of month (01-31)
DDD - day of year (001-366)
T - date/time separator
HH - hour (00-23)
MM - minute (00-59)
SS - second (00-59)
sss - fractions of second (000-999)

The time part of the expression represents time in Universal Time Coordinated (UTC), hence the
Z at the end of the expression (see Section 7.3.1 for further discussion). Note that in both the
PDS Data Set Catalog and data product labels the “Z” is optional and is assumed.

The preferred date/time format both for labels and Data Set Catalog templates is
CCYY-MM-DDTHH:MM:SS.sssZ.

7-2 Chapter 7. Date / Time Format

Date/Time Precision
The above date/time formats can be truncated to match the precision of the date/time value. The
following are examples of date/time values having limited precision:

1998
1998-12
1998-12-01
1998-12-01T23
1998-12-01T23:59
1998-12-01T23:59:58
1998-12-01T23:59:58.1

ODL Date/Time Information
Chapter 12, Object Description Language (ODL) Specification and Usage, section 12.3.2, Dates
and Times, of this document provides additional information on the use of ODL in date/time
formation, representation, and implementation.

7.2 Dates

The PDS allows dates to be expressed in conventional and native (alternate) formats.

7.2.1 Conventional Dates

Conventional dates shall be represented as either year, month, and day-of-month or as year and
day-of-year using the full ISO/DIS 8601 format, which has the fields separated by dash
characters, as follows: CCYY-MM-DD or CCYY-DDD. Both formats are acceptable for use in
PDS labels and Data Set Catalog templates, but the PDS recommends the CCYY-MM-DD
convention.

7.2.2 Native Dates

The format of a native date is user specified. An example of a native date is Julian Day, an
integer count of days since a given reference day (January 1, 4713 B.C.)

7.3 Times

The PDS allows times to be expressed in conventional and native (alternate) formats.

7.3.1 Conventional Times

Conventional times shall be represented as hours, minutes, and seconds using the full ISO/DIS
8601 format. The hours, minutes, and seconds consist of three two-digit fields separated by

Chapter 7. Date / Time Format 7-3

colons, with the field values being modulo 24, 60, and 60, respectively. The seconds field may
be optionally followed by a fractional part; if fractions of seconds are specified, a period shall be
used as the decimal point and not the European-style comma. The fractional part shall be at most
3 digits long.
The PDS has adopted the use of Universal Time Coordinated (UTC) for expressing time, using
the format HH:MM:SS.sssZ. Note that in both the PDS Data Set Catalog and data product labels
the “Z” is optional and is assumed. Fractions of seconds cannot exceed a precision of
milliseconds.

 The START_TIME and STOP_TIME data elements required in data product labels and catalog
templates use the UTC format. For data collected by spacecraft-mounted instruments, the date/
time shall be a time which corresponds to “spacecraft event time”. For data collected by
instruments not located on a spacecraft, this time shall be an earth-based event time value.

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of data from a particular spacecraft or ground-based facility with data from other
sources.

7.3.2 Native Times

Native or alternate time formats may be represented in a data product label or Data Product
Catalog using the NATIVE_START_TIME and NATIVE_STOP_TIME elements. Native times
also can be represented using specific data elements. Such data elements may be proposed by the
data supplier and reviewed by the PDS.

The following paragraphs describe typical examples of native time formats.

1. Spacecraft Clock Count (sclk) - Spacecraft clock count (sclk) provides a more precise
time representation than event time for instrument-generated data sets, and so may be
desirable as an additional time field. In a typical instance, a range of spacecraft-clock-
count values (i.e., a start-and a stop-value) may be required.

Spacecraft clock count (SPACECRAFT_CLOCK_START_COUNT and
SPACECRAFT_
CLOCK_STOP_COUNT) shall be represented as a right-justified character string field
with a maximum length of thirty characters. This format will accommodate the extra
decimal point appearing in these data for certain spacecraft and other special formats,
while also supporting the need for simple comparison (e.g., “>” or “<”) between clock
count values.

2. Longitude of Sun - Longitude of Sun (“L sub S”) is a derived data value which can be
computed, for a given target, from UTC.

3. Ephemeris Time - Ephemeris time (ET) is calculated as “TAI + 32.184 sec. + periodic
terms”. The NAIF S and P kernels have data that are in ET, but the user (via NAIF
ephemeris readers which perform data conversion) can obtain the UTC values.

7-4 Chapter 7. Date / Time Format

4. Relative Time - In addition to event times, certain “relative time” fields will be needed to
represent data times or elapsed times. Time-from-closest-approach is an example of such
a data element. These times shall be presented in a (D,H,M,S) format as a floating point
number, and should include fractional seconds when necessary. The inclusion of “day” in
relative times is motivated by the possible multi-day length of some delta times, as could
occur, for example, in the case of the several-month Galileo Jupiter orbit.

5. Local Times - For a given celestial body, LOCAL_TIME is the hour relative to midnight
in units of 1/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC) - When times must be expressed according to
an alternate time zone, they shall consist of hours, minutes, seconds, and an offset, in the
form HH:MM:SS.sss+n, where n is the number of hours from UTC.

Chapter 8. Directory Types and Naming 8-1

Chapter 8

Directory Types and Naming

The Directory Naming standard defines the convention for naming subdirectories on a data
volume. This standard lists the predetermined, standard directories that have been established by
PDS, plus the rules for forming subdirectory names and abbreviations.

8.1 Standard Directory Names

When any of the following directories are included on an archive product, the following standard
directory naming convention must be used.

CATALOG — Template subdirectory containing PDS Catalog templates.

DOCUMENT — Documentation subdirectory containing supplemental / ancillary material
which augments the understanding or use of the data products.

EXTRAS — Subdirectory to house "value added" elements of the volume beyond the scope of
the PDS required elements.

GAZETTER — Gazetteer subdirectory containing tables of information about the geological
features of a target.

INDEX — Data and inventory index subdirectory containing files which allow users to locate
data of interest.

LABEL — Label subdirectory containing include files which describe the data format and
organization.

SOFTWARE — Software subdirectory containing utilities, application programs, or
subprograms used to access or process data files.

The following standard directory names are recommended for use on archive volumes.

CALIB — Calibration data subdirectory containing calibration files used in original processing
of data, or needed to use the data.

GEOMETRY — Geometry data subdirectory containing relevant files (SEDRs, spice kernels)
needed to describe observation geometry.

BROWSE — Data subdirectory containing reduced resolution version of data products.

8-2 Chapter 8. Directory Types and Naming

DATA — A single subdirectory containing one or more data subdirectories each of which
contains data products. The DATA subdirectory should be used to unclutter the root directory of
multiple data directories.

Note that some data sets may not contain all the components above and, as a result, do not need
all of the directories listed above. See the Volume Organization and Naming chapter of this
document for the required and optional subdirectories on a volume. For example, many image
data sets do not include geometry files and so do not need a GEOMETRY directory.

8.2 Formation of Directory Names

1. A directory name shall consist of capitalized alphanumeric characters and the underscore
“_” character only (i.e., A-Z, 0-9, or “_”). No lowercase letters (i.e., a-z) or special
characters (e.g., “#“, “&“, “*”) are allowed.

2. A directory name shall not exceed 8 characters in length. The purpose of this is to comply
with the ISO 9660 level 1 media interchange standard.

3. The first letter of a directory name shall be an alphabetic character, unless the directory
name represents a year (e.g., 1984).

4. If numeric characters are used as part of the name (e.g., DIR1, DIR2, DIR3) the name
should be padded with leading zeros up to the maximum size of the numeric part of the
name (DIR0001, DIR0002, DIR3267).

5. Directories which contain a range of similarly named files shall be assigned directory
names using the portion of the filename which encompasses all the files in the directory,
with “X’s” used to indicate the range of values of actual filenames in the directory.

For example, the PDS Uranus Imaging CD-ROM disk contains image files which have
filenames that correspond to SPACECRAFT_CLOCK_START_COUNT values. The
directory that contains the image files ranging from C2674702.IMG through
C2674959.IMG has the directory name C2674XXX/.

6. Directory names shall use full length terms whenever possible (e.g., SATURN,
MAGELLAN, CRUISE, NORTH, DATA, SOFTWARE). Otherwise, directory names
shall be constructed from abbreviations of full length names using the underscore
character to separate abbreviated terms, if possible. The meaning of the directory name
should be clear from the abbreviation and from the directory structure.

For example, the following directory structure can be found on the Voyager 2 Images of Uranus
CD-ROM Volume 1:

Chapter 8. Directory Types and Naming 8-3

ROOT ARIEL
DOCUMENT
INDEX
OBERON
TITANIA
UMBRIEL
UNKNOWN
URANUS

C2674XXX
C2675XXX
C2687XXX

U_RINGS
C2675XXX
C2687XXX

In this case, it is clear from the context that the directory U_RINGS is the abbreviated form of
URANUS_RINGS.

7. High level directories that deal with data sets covering a range of planetary science
disciplines shall adhere to the following hierarchy:

A Planetary science directory: PLANET/
Planetary body subdirectories: MERCURY/, MOON/, MARS/, VENUS/, COMET/

Discipline subdirectories: ATMOS/, IONOSPHE/, MAGNETOS/, RING/, SURFACE/, and SATELLIT/
(Use satellite name if numerous files exist)

8. The recommended SOFTWARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. A platform-based model or
an application-based model can be used in defining software subdirectories. For a
platform-based model, the hardware platform and operating system/environment must be
explicitly stated. If there is more than one operating system/environment supported, then
they must be subdirectories under the hardware directories. If there is only one, then the
subdirectory can be promoted to the hardware directory.

For example, if software for the PC for both DOS and Windows were present on the volume, the directories
SOFTWARE/PC/DOS and SOFTWARE/PC/WIN would exist.

If only DOS software were present, the directory would be SOFTWARE/PCDOS.

8-4 Chapter 8. Directory Types and Naming

8.3 Path Formation Standard

The PDS standard for path names is based on Level 1 of the ISO 9660 International Standard. A
pathname may consist of up to 8 directory levels. Each directory name shall be limited to 8
characters (A - Z, 0 - 9, _ (underscore)). PDS has also chosen the UNIX/POSIX forward slash
separator (/) for use in path names. Path names typically appear on PDS volumes as data in index
tables for locating specific files on an archive volume. They may also appear as values in a
limited number of keywords (e.g. FILE_SPECIFICATION_NAME, PATH_NAME, and
LOGICAL_VOLUME_PATH_NAME).

The following are examples of valid path names:

TG15NXXX/TG15N1XX/TG15N12X/ - identifies the location of the directory TG15N12X at the third level below the
 top level of an archive volume.

DOCUMENT/ - identifies a DOCUMENT directory within the root directory.

Note: The leading slash is omitted because these are relative paths. The trailing slash is
included so that the concatenation of PATH_NAME and FILE_NAME gives the full file
specification.

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS
support for this format continues to exist, it is recommended that all future volumes shall use the
UNIX syntax instead.

8.4 Tape Volumes

When magnetic tape is used as the archive medium, a directory structure cannot be used because
the medium does not support multi-level directories. In this case, files must be stored in a
sequential fashion, as if they were all located in the same directory.
A directory structure for the volume shall be designed in any case, so that when the data are
transferred to a medium which supports hierarchical file structures, the data can then be placed
into a multi-level directory structure. A DIRECTORY object shall be placed on each tape
volume (within the VOLUME object) which is used to describe how the sequential files should
be placed in a hierarchical structure.

8.5 Exceptions to These Standards

In certain cases, the archive media used to store the data, the hardware used to produce the data
set, or the software which must operate on the data may impose restrictions on the names of
directories and their overall organization. In these cases, the alternate directory organization and
naming used on the data volume should be reviewed by PDS personnel during the data set
submission process in order to determine the best compromise between the standard given above
and any practical restrictions on the volume or data set structure.

Chapter 9. Documents 9-1

Chapter 9

Documents

To improve utility of an archival product, supplemental and/or ancillary reference material
(documents) may be included. This material is primarily textual and should augment, reinforce,
and assist in the overall understanding and/or use of the data products or software. It may
include, but is not limited to:

(1) flight project documents
(2) instrument papers
(3) science articles
(4) volume information
(5) software interface specifications (SISs)
(6) software user manuals

PDS has three guidelines for deciding whether to include documents: (1) Would this information
be helpful to a data user? (2) Is the material necessary? (3) Is the documentation complete?
Recognizing that there are many levels of inquiry regarding data sets, PDS seeks to err on the
side of completeness.

Each document must be prepared and saved in a PDS compliant format, have a PDS compliant
label, and be stored in the DOCUMENT directory of an archive volume (see the Volume
Organization and Naming chapter of this document).

A readable ASCII text version of each document must be included on the archival volume;
documents may also be provided in certain other PDS approved formats, at the option of the data
producer. 'ASCII text' includes only printable ASCII characters and the ASCII blank space; it
does not include special software constructs or graphics. 'Readable' means that special markup
insertions do not significantly interfere with the user's ability to read the file. Plain ASCII text,
HTML, TeX, and LaTeX files-subject to the 'readability' criterion-satisfy the 'ASCII text' PDS
requirement.

9.1 PDS Objects for Documents

Either of two PDS objects-TEXT or DOCUMENT-may be used for documents, subject to the
constraints in the next two subsections.

9.1.1 TEXT Objects

TEXT objects are preferred for documents which stand alone and have a narrow focus-for
example, describing the contents of an archive volume (AAREADME.TXT) or the contents of a

9-2 Chapter 9. Documents

directory (DOCINFO.TXT). Each file which uses the PDS TEXT object must:

(a) have an attached or detached label containing a TEXT object definition (see Appendix
A);

(b) be in plain, unmarked ASCII text (printable ASCII characters and the ASCII blank
space), cannot include programming language constructs such as HTML, and cannot
include graphics; and

(c) have a file name which ends with the extension .TXT.

9.1.2 DOCUMENT Objects

DOCUMENT objects are preferred when several versions of the same file are provided and/or
when there are several component files in the document-for example, graphics in addition to text.
Each file which uses the PDS DOCUMENT object must:

(a) have a detached label (or, in the case of a single file in plain ASCII text, optionally an
attached label) containing a DOCUMENT object definition (see Appendix A);

(b) be in plain, unmarked ASCII text; an approved markup language format; or an
approved non-ASCII format; and

(c) use the objects, interchange formats, document formats, and file name extensions
below:

Format Object Interchange
Format

Document Format File Extension

 Plain ASCII Text ASCII_DOCUMENT ASCII TEXT .ASC
 HTML HTML_DOCUMENT ASCII TEXT .HTM or .HTML*
 TeX TEX_DOCUMENT ASCII TEXT .TEX
 LaTeX LATEX_DOCUMENT ASCII TEXT .TEX
 Adobe PDF PDF_DOCUMENT BINARY ADOBE PDF .PDF
 MS Word WORD_DOCUMENT BINARY MICROSOFT WORD .DOC
 Rich Text RTF_DOCUMENT BINARY RICH TEXT .RTF
 GIF GIF_DOCUMENT BINARY GIF .GIF
 JPG JPG_DOCUMENT BINARY JPG .JPG
 Encapsulated
 Postscript

 EPS_DOCUMENT BINARY ENCAPSULATED
 POST SCRIPT

 .EPS

 Postscript PS_DOCUMENT BINARY POSTSCRIPT .PS
 Tagged Image
 File Format

 TIFF_DOCUMENT BINARY TIFF .TIF or .TIFF*

* See chapter File Specification and Naming regarding extensions with more than three
characters.

Chapter 9. Documents 9-3

Example: A document defined as a DOCUMENT object appearing in the DOCUMENT
directory might be the following:

1. MYDOC.ASC - required ASCII version
2. MYDOC.DOC - optional Microsoft Word version to retain all graphics
3. MYDOC001.TIF - optional scanned TIFF version of selected pages
4. MYDOC002.TIF - optional scanned TIFF version of other selected pages
5. MYDOC.LBL - PDS label defining DOCUMENT object(s) for these files

Optional versions of the document should have the same file name as the required ASCII version
but with different extensions. Optional versions should be defined as DOCUMENT objects in
the PDS label; the name of the required ASCII file should be indicated using the DESCRIPTION
keyword.

9.2 Document Format Details

9.2.1 Plain, Unmarked ASCII Text

Line Delimiters / Line Length - PDS recommends that lines of plain ASCII text be limited to
78 or fewer characters. The line length recommendation is made to facilitate importation of text
into environments which may reserve several characters for line numbering or other uses.
Regardless of length, each line must be followed by the Carriage Return (ASCII decimal 13) and
Line Feed (ASCII decimal 10) characters. The use of the Carriage Return and Line Feed
characters ensures readability in the four environments commonly in use by planetary
researchers. In the Macintosh and Unix environments simple utilities are available (Apple File
Exchange and Translate, respectively) to add (if submitting data) or eliminate (if using data) the
Line Feed or Carriage Return.

Page Break / Page Length - Paragraphs should be separated by one or more empty lines-ASCII
blanks only (if used for padding) and the Carriage Return/Line Feed sequence. This facilitates
simple conversion of text files into word processor formats. In order to organize text into pages,
the Page Feed (ASCII decimal 12) is allowed. If this feature is used, page length should be
limited to 60 lines of text and a Page Feed character should be inserted immediately after the
END (Carriage Return/Line Feed) statement of any PDS labels which appear at the beginning of
the file.

9.2.2 ASCII Text Containing Markup Language

Line Delimiters / Line Length - Because these files conform to specific markup language
constructs, the recommended line length of 78 or fewer characters does not apply. However,
each line must be delimited by the Carriage Return (ASCII decimal 13) and Line Feed (ASCII
decimal 10) characters.

9-4 Chapter 9. Documents

Page Break / Page Length - Because these files conform to specific markup language constructs
and because the Page Feed (ASCII decimal 12) character may not function as such, the
recommended page length limit does not apply.

Note: There are several markup languages which are not recommended because the markup is
so extensive that it inhibits easy reading of the text portions of the file. There are also
automatic generators or converters of files that create output in approved formats which
are also difficult to read. Such files may be judged unsuitable for meeting the 'ASCII
text' requirement.

The following subsections describe PDS standards applicable to HTML files.

9.2.2.1 HyperText Markup Language (HTML) Version

PDS archive products must adhere to Version 3.2 of the HTML language, a Standard
Generalized Markup Language which conforms to International Standard ISO 8879. All files are
subject to validation against the HTML 3.2 SGML Declaration and the HTML Document Type
Definition.

Note: Constructs not defined in the HTML 3.2 standard (e.g., FRAME, STYLE, SCRIPT, and
FONT FACE tags) are not allowed in PDS document files.

9.2.2.2 Location of Files

PDS strongly recommends that targets of all HTML links be present on the archive volume. In
cases where external links are provided, the link should lead to supplementary information which
is not essential to understanding or use of the archival data.

PDS recommends that all files which comprise an HTML document-or series of documents-be
co-located in a single directory. However, locating ancillary files (e.g., images, common files) in
subdirectories may be required under certain circumstances (e.g., to avoid conflicts in file names
and to minimize replication of common files).

9.2.2.3 Character Set

Documentation files prepared to accompany the data set or data set collection must be validated
in that the files can be copied or transmitted electronically, and can be read or printed by their
target text processing program. Documentation files should be spell-checked prior to being
submitted to PDS for validation.

9.2.2.4 Excluded / Discouraged HTML 3.2 Capabilities

Although the APPLET tag is advertised to be supported by all Java enabled browsers, not all
applets execute on all browsers on all platforms. Further, some browsers require that the user
explicitly enable use of Java applets before the applet will execute. Applets are permitted only

Chapter 9. Documents 9-5

when the information they convey is not essential to understanding or use of the archival data.

Use of the TAB character is permitted but strongly discouraged because of variations in
implementation among browsers and resulting misalignments within documents.

Use of animated GIFs is discouraged.

9.2.3 Non-ASCII Formats

Where possible the version or ENCODING_TYPE should be specified for the format used. For
example, a PostScript or Encapsulated PostScript file could be further documented by noting the
generating version with the DESCRIPTION keyword. The label defining a GIF document might
include the keyword-value pair ENCODING_TYPE = "GIF87A".

9.3 Examples

9.3.1 Simple Attached label (Plain ASCII Text)

The following label could be prepended to a plain ASCII text file which describes the content
and format of Mars Pathfinder Imager Experiment Data Records. The aggregate file could be
stored under the file name EDRSIS.TXT.

PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM
OBJECT = TEXT
 NOTE = "Mars Pathfinder Imager Experiment Data Record SIS"
 PUBLICATION_DATE = 1998-06-30
END_OBJECT = TEXT
END

9.3.2 Complex Detached Label (Two Document Versions)

If the data producer chose to provide the same document in both plain ASCII text and as a
Microsoft Word document, the detached label would have the name EDRSIS.LBL and would
be as follows:

PDS_VERSION_ID = PDS3
RECORD_TYPE = UNDEFINED
^ASCII_DOCUMENT = "EDRSIS.ASC"
^WORD_DOCUMENT = "EDRSIS.DOC"

OBJECT = ASCII_DOCUMENT
 DOCUMENT_NAME = "Mars Pathfinder Imager Experiment Data Record"
 PUBLICATION_DATE = 1998-06-30
 DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
 INTERCHANGE_FORMAT = ASCII

9-6 Chapter 9. Documents

 DOCUMENT_FORMAT = TEXT
 DESCRIPTION = "This document contains a textual description
 of the VICAR and PDS formatted Mars Pathfinder
 IMP Experiment Data Records. This is the ASCII
 text version of the document required by PDS."
END_OBJECT = ASCII_DOCUMENT

OBJECT = WORD_DOCUMENT
 DOCUMENT_NAME = "Mars Pathfinder Imager Experiment Data Record"
 PUBLICATION_DATE = 1998-06-30
 DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = "MICROSOFT WORD"
 DESCRIPTION = "This document contains a textual description
 of the VICAR and PDS formatted Mars Pathfinder
 IMP Experiment Data Records. The document was
 created using MicroSoft Word 6.0.1 for the Macintosh."
END_OBJECT = WORD_DOCUMENT
END

9.3.3 Complex Detached Label (Documents Plus Graphics)

The following label (EDRSIS.LBL) illustrates the use of an HTML document as the required
ASCII document. The same document is also included as a PDF file, and four GIF images are
included separately.

PDS_VERSION_ID = PDS3
RECORD_TYPE = UNDEFINED
^HTML_DOCUMENT = "EDRSIS.HTM"
^PDF_DOCUMENT = "EDRSIS.PDF"
^GIF_DOCUMENT = ("FIG1.GIF","FIG2.GIF","TAB1.GIF","TAB2.GIF")

OBJECT = HTML_DOCUMENT
 DOCUMENT_NAME = "Mars Pathfinder Imager Experiment Data Record"
 PUBLICATION_DATE = 1998-06-30
 DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
 INTERCHANGE_FORMAT = ASCII
 DOCUMENT_FORMAT = HTML
 DESCRIPTION = "This document contains a textual description
 of the VICAR and PDS formatted Mars Pathfinder
 IMP Experiment Data Records. This is the ASCII
 text version of the document required by PDS."
END_OBJECT = HTML_DOCUMENT

OBJECT = PDF_DOCUMENT
 DOCUMENT_NAME = "Mars Pathfinder Imager Experiment Data Record"
 PUBLICATION_DATE = 1998-06-30
 DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = "ADOBE PDF"
DESCRIPTION = "This document contains a textual description
 of the VICAR and PDS formatted Mars Pathfinder
 IMP Experiment Data Records. This is the ASCII
 text version of the document required by PDS."
END_OBJECT = PDF_DOCUMENT

OBJECT = GIF_DOCUMENT
 DOCUMENT_NAME = "Mars Pathfinder Imager Experiment Data Record"
 PUBLICATION_DATE = 1998-06-30
 DOCUMENT_TOPIC_TYPE = "DATA PRODUCT SIS"

Chapter 9. Documents 9-7

 FILES = 4
 ENCODING_TYPE = "GIF89A"
 INTERCHANGE_FORMAT = BINARY
 DOCUMENT_FORMAT = GIF
DESCRIPTION = "This document is a GIF89A representation of
 two figures and two tables from the Mars
 Pathfinder IMP Experiment Data Record SIS.
 The figures and tables are included in the
 PDF version of the document; only the tables
 are included in the HTML version -- and then
 in a somewhat different presentation than in
 the original, printed version of the document.
 The files use the naming convention FIGxx.GIF,
 where xx is the figure number, and TABxx.GIF,
 where xx is the table number, in the file."
END_OBJECT = GIF_DOCUMENT
END

Chapter 10. File Specification and Naming 10-1

Chapter 10

File Specification and Naming

The File Specification and Naming Standard defines the PDS conventions for forming file
specifications and file names. This standard is based on Level 1 and Level 2 of the international
standard ISO 9660, “Information Processing - Volume and File Structure of CD-ROM for
Information Interchange.”

ISO 9660 Level 1 versus ISO 9660 Level 2

- PDS recommends that archive products comply with the ISO 9660 Level 1 specification.
Specifically, PDS recommends that CD-ROM volumes which are anticipated to have a wide
distribution use file identifiers consisting of a maximum of 8 characters for the file name and
3 characters for the extension to comply with the ISO 9660 Level 1 specification.

- PDS has adopted the ISO 9660 Level 2 specification for those archive products for which
there are compelling reasons to relax the 8.3 filename restrictions.

10.1 File Specification Standards

A file specification consists of the following elements:

A complete directory path name (as discussed in the Directory Types and Naming
chapter of this document)

A file name having an extension

The PDS has adopted the UNIX/POSIX forward slash operator (/) for use in path names.
Directory path name formation is discussed further in the Directory Types and Naming chapter
of this document.

The following is an example of a simple file specification. The file specification identifies the
location of the file relative to the root of a volume, inlcuding the directory path name.

File Name: TG15N122.IMG

File Specification: TG15NXXX/TG15N1XX/TG15N12X/TG15N122.IMG

Do not use path or file names that correspond to operating system specific names, such as:
AUX COM1 CON LPT1 NUL PRN

10-2 Chapter 10. File Specification and Naming

10.1.1 ISO 9660 Level 1 Specification

A file name consists of a basename and an extension separated by a required FULL STOP (a.k.a.
period) character (.). The total length of the file name shall not exceed 12 characters. The length
of the base name shall not exceed 8 characters and the extension shall not exceed 3 characters.
The file identifier must be suffixed with a version number consisting of a semicolon and an
integer to comply with the ISO 9660 Level 1 specification. Both the base name and extension
shall contain only the upper case alphanumeric character set (A- Z, 0-9), and underscore (_).
These requirements are often referred to as the 8.3 (8 dot 3) file naming convention. These
limitations exist primarily to accommodate older computer systems (e.g. IBM DOS-based PCs)
that cannot handle longer file names. Since PDS archive volumes are designed to be read on
many platforms, including PCs, these restrictions are necessary.

Preferred format: FILENAME (1..8 characters) "." EXTENSION (3 characters)

Allowable format: FILENAME (1..8 characters) "." EXTENSION (1..3 characters)

Actual format
on archive media: FILENAME (1..8 characters) "." EXTENSION (1..3 characters) ";1"

10.1.2 ISO 9660 Level 2 Specification

A file name consists of a basename and an extension separated by a required FULL STOP (a.k.a.
period) character (.). The total length of the file name shall not exceed 31 characters. Both the
base name and extension shall contain only the upper case alphanumeric character set (A- Z, 0-
9), and underscore (_). These requirements are often referred to as the 27.3 (27 dot 3) file
naming convention. The file identifier must be suffixed with a version number consisting of a
semicolon and an integer to comply with the ISO 9660 Level 2 specification. It is strongly
recommended that the PDS file naming recommendations for file extensions be followed
(including the use of the standard 3 character extensions).

Preferred format: FILENAME (1..27 characters) "." EXTENSION (3 characters)

Allowable format: FILENAME (1..29 characters) "." EXTENSION (1..29 characters)

Actual format
on archive media: FILENAME (1..29 characters) "." EXTENSION (1..29 characters) ";1"

10.2 File Naming Standards

The following sections identify the PDS required and reserved file names and file extensions.
Required and reserved file names and extensions provide consistency across PDS archive
volumes, which is helpful to users. Also, software tools can make use of this predictability.

Required means that if a file contains a given type of information, it shall have the given name or

Chapter 10. File Specification and Naming 10-3

extension. Reserved means that if a file has a given name or extension, it shall contain that type
of information. For example, the volume object is contained in, and only in, the file named
VOLDESC.CAT. It is a required file name. A file named TG15N122.IMG contains an image.
File extensions should be used to identify the data type of a file. This is reflected in the required
and reserved file extensions listed later in this chapter.

10.2.1 Required File Names

VOLDESC.CAT - This file name must be used for the file containing the volume object. This
required file is placed in the ROOT directory of a volume.

objectname.CAT - This category of file name must be used for files containing a catalog object.
These files, if present on a volume, must be placed in the CATALOG directory of a volume. The
Software Inventory catalog object may also be placed in the SOFTWARE hierarchy under the
appropriate DOC directory.

“objectname” is one of the commonly used catalog objects listed below. The form of the file
name varies if one or more objects are included in the archive product. For example, if a volume
contains a single data set, the data set object shall be contained in the file named
DATASET.CAT. If the volume contains multiple data sets and the data set objects are contained
in separate files, each file shall be named xxxxxxDS.CAT where "xxxxxx" is replaced with an
acronym of up to six characters for the data set.

It is possible to include all of the catalog objects in a single file. However, PDS strongly
discourages this approach. One of the advantages to supplying individual files is that each
catalog object can be ’plugged into’ other archive products. If a single file is used to contain all
catalog objects, it must be named CATALOG.CAT. The pointer expression becomes:

^CATALOG = "CATALOG.CAT"

If catalog objects are organized in separate files or sets of files, pointer expressions shall be
constructed according to the following table. Under "File Name", the first line shows the file
name to be used if a single catalog file is present on the volume for the particular type of catalog
object named. The second shows the syntax and file name convention to be followed if multiple
catalog files are present for the named object.

Catalog Pointer Name File Name

^DATA_SET_CATALOG = "DATASET.CAT"
= {"xxxxxxDS.CAT","yyyyyyDS.CAT"}

^DATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"
= {"xxxxxDSC.CAT","yyyyyDSC.CAT"}

^DATA_SET_MAP_PROJECTION_CATALOG = "DSMAP.CAT"
= {"xxxDSMAP.CAT","yyyDSMAP.CAT"}

^INSTRUMENT_CATALOG = "INST.CAT"
= {"xxxxINST.CAT","yyyyINST.CAT"}

^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
= {"xxxxHOST.CAT","yyyyHOST.CAT"}

10-4 Chapter 10. File Specification and Naming

^MISSION_CATALOG = "MISSION.CAT"
= {"xxxxxMSN.CAT","yyyyyMSN.CAT"}

^PERSONNEL_CATALOG = "PERSON.CAT"
= {"xxxxPERS.CAT,"yyyyPERS.CAT"}

^REFERENCE_CATALOG = "REF.CAT"
= {"xxxxxREF.CAT","yyyyyREF.CAT"}

^SOFTWARE_INVENTORY_CATALOG = "SWINV.CAT"
= {"xxxSWINV.CAT", "yyySWINV.CAT"}

^TARGET_CATALOG = "TARGET.CAT"
= {"xxxTGT.CAT", "yyyTGT.CAT"}

AAREADME.TXT- This file name must be used for the file that contains a terse description of
the volume contents. This required file is placed in the ROOT directory of a volume.

ERRATA.TXT- This file name is used for a file used to provide comments as well as to report
errors. Cumulative comments for a volume set are kept in this file (although cumulative
comments are optional for a volume set). This optional file is placed in the ROOT directory of a
volume.

VOLINFO.TXT - This file name must be used for the file containing detailed information
necessary to interpret the data set(s) contained on the volume. When present, this file is placed in
the DOCUMENT directory of a volume. The VOLINFO.TXT file is referenced in the catalog
object as ^DESCRIPTION = "VOLINFO.TXT".

NOTE: PDS strongly discourages the use of the VOLINFO.TXT file. This file can be provided
as an alternate for individual catalog objects, but this approach negates the ability to re-
use each catalog object in other archive products. PDS requires that either the
VOLINFO.TXT file, or the objectname.CAT files described above, be present on the
volume.

The following xxINFO.TXT files are required to appear in the non-data subdirectories that
appear on the volume:

Sub-directory File
 BROWSE BROWINFO.TXT
 CALIB CALINFO.TXT
 CATALOG CATINFO.TXT
 DOCUMENT DOCINFO.TXT
 EXTRAS EXTRINFO.TXT
 GAZETTER GAZINFO.TXT
 GEOMETRY GEOMINFO.TXT
 INDEX INDXINFO.TXT
 LABEL LABINFO.TXT
 SOFTWARE SOFTINFO.TXT

Chapter 10. File Specification and Naming 10-5

The following xxINFO.TXT files are recommended in appropriate SOFTWARE subdirectories:

Sub-directory File
 SOFTWARE/PC PCINFO.TXT
 SOFTWARE/MAC MACINFO.TXT
 SOFTWARE/SUN SUNINFO.TXT
 SOFTWARE/SGI SGIINFO.TXT

The following file names should be used for INDEX files:

Single Index Multi-Index

 Single Volume INDEX.TAB axxINDEX.TAB
 Multi-volume set INDEX.TAB and

 CUMINDEX.TAB
 axxINDEX.TAB and
 axxCMIDX.TAB

10.2.2 Reserved File Names

VOLDESC. SFD - for use with a file containing an SFDU Reference Class object for an archive
volume. Note that this file is identified here for backward compatability with previous versions
of the PDS standards and is not to be used in current archive products.

10.2.3 Required File Extensions

.CAT - for use with a file containing a catalog object

.FMT - for use with an include file containing structural information (meta data) describing a
data object

.LBL - for use with a file containing a detached PDS label for any class of data object. Note that
a file containing a detached label should have the same base name as its associated data
file, but the extension .LBL

.TXT - for use with a file described by the TEXT data object

.ASC - for use with a file containing a document in ASCII text format described by a label
containing a DOCUMENT object definition.

10-6 Chapter 10. File Specification and Naming

10.2.4 Reserved File Extensions

Extension Description
(for use with a file containing)

 DAT Binary files (other than images)
 TAB Table data

 (Note: this extension is also used for table data in ASCII form
 described by a detached PDS label)

 IMG Image data
 IBG Browse image data
 IMQ Image data that have been compressed
 HTM HTML document
 TEX TeX or LaTeX document
 PDF Adobe PDF document
 DOC Microsoft Word document
 RTF Rich Text document
 PS Postscript
 EPS Encapsulated Postscript
 GIF GIF image
 JPG JPEG image
 QUB Spectral (or other) image qubes
 XSP SPICE Transfer format SPK (ephemeris) files
 BSP SPICE Binary format SPK (ephemeris) files
 XC SPICE Transfer format CK (pointing) files
 BC SPICE Binary format CK (pointing) files
 TI SPICE Text IK (instrument parameters) files
 TLS SPICE Leapseconds kernel files
 TPC SPICE Physical and cartographic constants kernel files
 TSC SPICE Spacecraft clock coefficients kernel files
 XES SPICE E-kernel files.
 EXE Application or Executable
 MAK Makefile for compiling / linking application or executable
 OBJ Object file
 DLL Dynamic Link Library
 LIB Library of object files
 ZIP Zip-compressed files within PDS.

NOTE: Additional file extensions are reserved for use for document files only and are described
in the Documentations chapter in this document.

10.3 File Naming Guidelines

In cases where file names will contain an identification value constructed from the time tag or
data object identifier, the following forms are suggested (but not required):

Pnnnnnnn.EXT

Chapter 10. File Specification and Naming 10-7

where P is one of the following:
C - The following value is a clock count value (C3345678.IMG)
T - The following value is a time value (T870315.TAB)
F - The following value is a FrameID or an ImageID (F242AO3.IMG)
N - The following value is a numeric file identification number (N003.TAB).

Chapter 11. Media Formats for Data Submission and Archive 11-1

Chapter 11

Media Formats for Data Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its Science Nodes. It is expected that flight projects will deliver all standard digital
products on magnetic or optical media. Electronic delivery of modest volumes of special science
data products may be negotiated with the Science Nodes.

During archive planning, the data producer and PDS will determine the medium (or media) to
use for data submission and archive. This standard lists the media that are most commonly used.
Delivery of data on media other than those listed here can be negotiated with PDS on a case-by-
case basis.

The use of 12-inch Write Once Read Many (WORM) disk, 8-mm EXABYTE tape or 4-mm
DAT tape is NOT recommended for archival products. WORM disks are not transportable
between various vendor hardware. Helical scan tape (8-mm or 4-mm) is prone to catastrophic
read errors.

For archival products only media that conform to International Standards Organization (ISO)
standards for physical and logical recording formats should be used.

1. The preferred data delivery medium is the compact disc, either CD-ROM or CD-WO
(recordable) disc, in ISO-9660 format, using Interchange Level 1.

2. Standard computer compatible tape (CCT) on 12-inch reels recorded in ANSI format
(equivalent to VAX 'COPY' format) is acceptable.

3. ISO compatible 5 1/4-inch WORM or Magneto Optical disk is acceptable.

4. IBM 3480-compatible tape cartridges are acceptable.

11.1 CD-ROM Recommendations

11.1.1 Use of Extended Attribute Records (XARs)

The use of Extended Attribute Records (XARs) on CD-ROMs shall be at the discretion of the
data producer, based on the anticipated use of the CD-ROMs. If the CD-ROMs will be widely
used on VMS platforms with software which expects certain record formats, then XARs should
be provided. If the CD-ROMs will be used on mixed platforms and there is no existing software
on the VMS platform which accesses the data files, XARs need not be included. This issue
should be discussed during the Peer Review or Data Delivery Review for any CD-ROM product.

11-2 Chapter 11. Media Formats for Data Submission and Archive

See the Record Formats chapter of this document for additional requirements on CD-ROMs that
have XARs.

Software developed by PDS for use on VMS platforms should not expect record attributes to be
specified on all CD-ROM data files, and should allow processing of files which do not have
XAR records. Preferably, they should extract information about the record attributes from the
PDS labels, not from the operating system.

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMs be premastered using a single-session, single-track format.
Other formats have been found to be incompatible with some readers.

11.1.3 Packaging Software files on a CD-ROM

If the archive is being premastered such that it will be supported on all platforms and it includes
software for the MAC and SUN, then the following applies:

 1. MAC Software

If the archive includes software for the MAC, the MAC files must be prepared in a particular
format. This is because other platforms can't recognize the resource and data fork files that come
with MAC applications. This has been done with the NIHIMAGE software on the Magellan
GxDR and the Clementine EDR CD-ROMs. There is a MAC utility, called STUFFIT, that is
used to prepare the files; i.e. compress and BINHEX the MAC files. The users will also need
this utility in order to use the software (they will need to unBINHEX and decompress the file).
This should be described in a text file included on the CD-ROM (in the appropriate
SOFTWARE/DOC subdirectory).

Example of text documenting HQX files

 Macintosh Software

This directory contains software which can be used to display the GXDR
images on a Macintosh II computer with an 8-bit color display.

NOTE: Because of the way this CD-ROM was produced, it was not
possible to record this display program as a Macintosh executable
file. Anyone who is unfamiliar with the Macintosh STUFFIT utility
should contact the PDS operator, 818-306-6026, SPAN address
JPLPDS::PDS_OPERATOR, INTERNET address PDS_OPERATOR@JPLPDS.JPL.NASA.GOV

The file IMAGE.HQX contains the NIH Image program, along with several
ancillary files and documentation in Microsoft WORD format. It was
written by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD-ROM disks.

The Image executable and manual are stored in BINHEX format, and the
utility STUFFIT or UNSTUFFIT must be used to: 1) decode the BINHEX

Chapter 11. Media Formats for Data Submission and Archive 11-3

file IMAGE.HQX into IMAGE.SIT, using the 'DECODE BINHEX FILE...' option
in the Other menu; and 2) use 'OPEN ARCHIVE' from the File menu to
extract Image 1.40 from the STUFFIT archive file. There are also
several other files in the archive file which should be unstuffed and
kept together in the same folder as the Image executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

 Raymond Lau MacNET:RayLau Usenet:raylau@dasys1.UUCP
 100-04 70 Ave. GEnie:RayLau
 Forest Hills, N.Y. 11375-5133 CIS:76174,2617
 United States of America. Delphi:RaymondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

 Aladdin Systems, Inc.
 Deer Park Center
 Suite 23A-171
 Aptos, CA 95003
 United States of America

 2. SUN Software - preserving the SUN filesystem (e.g. filenames)

The ISO standard is all files and directories are uppercase, so when a disc is premastered as an
ISO CD, this is automatically done by the premastering software. We know from experience
that some CD readers connected to SUNs can show files/directories as uppercase instead of
lowercase. This can cause problems when the user copies the files over and tries to do a build if
the software filename should be lowercase.

 There are two options on how to preserve the SUN filesystem (other than not doing anything
and just documenting it). The first option was used for Clementine.

The options are:
a. Build tar/compressed/encoded files for the SUN executables and source files. This is
analogous to what is done for the MAC with the HQX files. This way the actual software
filenames will be retained as they should be for the SUN when the user copies over the files and
decodes/ uncompresses/detars them. This should be documented.

 b. YoungMinds provides something to deal with this very problem. A translation table can be
created (called YMTRANS.TBL) to provide a mapping of the filename on the CD to what it
should be on the SUN UNIX. If the premastering is on a PC, this can't be done automatically
because the files have already been moved to a PC. However, it is only an ASCII table with a
simple format so it can be created manually. There would have to be a translation table in every
SUNOS subdirectory (/BIN, /SOURCE, /DOC) and its contents should only be of the files that
appear in the subdirectory in which it exists. Software must be provided on the CD (provided by
YoungMinds) for the user to copy the files. This software uses the translation tables. This
would also have to be documented. As an alternative to the Young Minds solution, one could
supply a custom script with the CD that will perform the proper case translations.

Chapter 12. Object Description Language Specification and Usage 12-1

Chapter 12

Object Description Language Specification and Usage

The following provides a complete specification for the Object Description Language (ODL), the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains a formal definition of the grammar of the ODL and describes the
semantics of the language. PDS specific implementation notes and standards are referenced in
separate sections of this chapter.

12.1 About the ODL Specification

This standard describes Version 2.1 of the ODL. Version 2.1 of ODL supersedes Versions 0 and
1 of the language which were used previously by the PDS and other groups. For the most part,
ODL Version 2.1 is upwardly compatible with previous versions of ODL. There are, however,
some features found in ODL Versions 0 and 1 that have been removed from or changed within
Version 2. The differences between ODL versions are described in Section 12.7. The following
is a sample data label written in ODL that describes a file and its contents:

/* File Format and Length */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 800
FILE_RECORDS = 860

/* pointer to First Record of Major Objects in File */
^IMAGE = 40
^IMAGE_HISTOGRAM = 840
^ANCILLARY_TABLE = 842

/* Image Description */
SPACECRAFT_NAME = VOYAGER_2
TARGET_NAME = IO
IMAGE_ID = "0514J2-00"'
IMAGE_TIME = 1979-07-08T05:19:11
INSTRUMENT_NAME = NARROW_ANGLE_CAMERA
EXPOSURE_DURATION = 1.9200 <SECONDS>
NOTE = “Routine multispectral longitude

 coverage,1 of 7 frames”
/* Description of the Objects Contained in the File */

OBJECT = IMAGE
 LINES = 800
 LINE_SAMPLES = 800
 SAMPLE_TYPE = UNSIGNED_INTEGER
 SAMPLE_BITS = 8
END_OBJECT = IMAGE

OBJECT = IMAGE_HISTOGRAM
ITEMS = 25
ITEM_TYPE =INTEGER
ITEM_BITS = 32
END_OBJECT = IMAGE_HISTOGRAM

12-2 Chapter 12. Object Description Language Specification and Usage

OBJECT = ANCILLARY_TABLE
 ^STRUCTURE = “TABLE. FMT”
 END_OBJECT = ANCILLARY_TABLE
END

12.1.1 Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear
throughout the following sections. These notes deal with issues that are beyond language syntax
and semantics but that are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which is the major user of ODL-encoded data labels, has levied additional
implementation requirements for software used within the PDS and these requirements are
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to develop software to read or write subsets of the ODL. Specifically,
software developers may:

• Eliminate support for the GROUP statement (see Section 12.4.5.2 for additional
information)

• Not support pointer statement

• Not support certain types of data values

For every syntactic element supported by an implementation, the corresponding semantics must
be fully supported, as spelled out in this document. Software developers should be careful to
assure that language features will not be needed for their particular applications before
eliminating them. Documentation on label reading/writing software should clearly indicate
whether or not the software supports the entire ODL and if the software does not support the full
ODL specification, the documentation should clearly spell out the subset that is allowed.

12.1.1.2 Language Supersets

Software for writing ODL must not provide or allow lexical or syntactic elements over and
above those described below. With the exception of the PVL-specific extensions below, software
for reading ODL must not provide or allow any extensions to the language.

12.1.1.3 PDS Implementation of PVL-Specific Extensions

PDS implementation of software for reading ODL may, in some cases, provide handling of
lexical elements which are included in the CCSDS specification of the Parameter Value
Language (PVL). PVL is a superset of ODL. Extensions which may be handled by such software
include:

Chapter 12. Object Description Language Specification and Usage 12-3

• BEGIN_OBJECT as a synonym for the reserved word OBJECT.

• BEGIN_GROUP as a synonym for the reserved word GROUP.

• Use of the semicolon (;) as a statement terminator.

These lexical elements will not be supported by software which writes ODL.Therefore, they
must be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT
and BEGIN_GROUP synonyms) upon output.

12.1.2 Notation

The formal description of the ODL grammar is given in a Backus-Naur format (BNF) notation.
Language elements are defined using rules of the following form:

defined_element ::= definition

where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
 categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
 specification, spaces take the place of underscores (for example, units

expression).

2. Boldface type is used to denote reserved identifiers. For example:

object

Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. The elements within the bracket
may occur once at most.

4. Square brackets followed immediately by an asterisk or plus sign specify
repeated elements. If the asterisk follows the brackets, the elements in the
brackets may appear zero, one, or more times. If a plus sign follows the brackets,
the elements in the brackets must appear at least once. The repetitions occur from
left to right.

5. A vertical bar separates alternative elements.

6. If the name of any syntactic category starts with an italicized part, it is
equivalent to the category name without the italicized part. The italicized part is

12-4 Chapter 12. Object Description Language Specification and Usage

intended to convey some semantic information. For example, both
object_identifier and units_identifier are equivalent to identifier; object_identifier
is used in places where the name of an object is required and units_identifier is
used where the name of some unit of measurement is expected.

12.2 Character Set

The character set of ODL is the International Standards Organization's ISO 646 character set.
The U.S. version of the ISO 646 character set is ASCII and the ASCII graphical symbols are
used throughout this document. In other countries certain symbols have a different graphical
representation.

The ODL character set is partitioned into letters, digits, special characters, spacing characters,
format effectors and other characters:

character :: = letter | digit | special_character |
spacing_character | format_effector |
other_character

The letters are the uppercase letters A - Z and the lowercase letters a - z. The ODL is case-
insensitive, meaning that lower case letters are treated as identical to their upper-case equivalent.
Thus the following identifiers are equivalent:

• IMAGE_NUMBER

• Image_Number

• image_number

An exception to the case rule is when lowercase letters appear as part of text strings. For
example, the text String “abc” is not the same as the string “ABC”.

The digits are 0, 1,2,3,4, 5, 6,7,8,9.
The following special characters are used in the ODL:

Symbol Name Usage

= Equals The equals sign equates an attribute or pointer to a value.

{ } Braces Braces enclose an unordered set of values.

() parentheses parentheses enclose an ordered sequence of values.

+ Plus The plus sign indicates a positive numeric value.

 - Minus The minus sign indicates a negative numeric value.

< > Angle brackets Angle brackets enclose a units expression associated with a numeric value.

. Period The period is the decimal place in real numbers.

" Quotation Marks Quotation marks denote the beginning and end of a text string value.

’ Apostrophe Apostrophes mark the beginning and end of a literal value.

Chapter 12. Object Description Language Specification and Usage 12-5

_ Underscore The underscore separates words within an identifier.

, Comma The comma separates the individual values in a set or sequence.

/ Slant The slant character indicates division in units exp ressions. The slant is also

part of the comment delimiter.

* Asterisk The asterisk indicates multiplication in units expressions. Two asterisks in
a

row indicate exponentiation in units expressions. The asterisk is also part of

the comment delimiter.

: Colon The colon separates hours, minutes and seconds within a time value.

Sharp The sharp delimits the digits in an integer number value expressed in based

notation.

& Ampersand The ampersand denotes continuation of a statement onto another line.

^ Circumflex The circumflex indicates that a value is to be interpreted as a pointer.

Two characters, called the spacing characters, separate lexical elements of the language and can
be used to format characters on a line:

Space
Horizontal Tabulation

The following ISO characters are format effectors, used to separate ODL encoded statements
into lines:

Carriage Return
Line Feed
Form Feed
Vertical Tabulation

The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other characters in the ISO 646 character set that are not required to write ODL statements
and labels. These characters may, however, appear within text strings and quoted symbolic
literals:

$ % ; ? @ []’ | ~

The category of other characters also includes the ASCII control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.g., the control
characters that serve as spacing characters or format effectors). As with the printing characters in
this category, the control characters in this category can appear within a text String or symbolic
literal. The handling of control characters within text strings and symbolic literals is discussed in
Section 12.3.5 below.

12.3 Lexical Elements

12-6 Chapter 12. Object Description Language Specification and Usage

This section describes the lexical elements of the ODL. Lexical elements are the basic building
blocks of the ODL and statements in the language are composed by stringing lexical elements
together according to the grammatic rules presented in Section 12.4. The lexical elements of the
ODL are:

• Numbers

• Dates and Times

• Strings

• Identifiers

• Special symbols used for operators, etc.

Lexical elements are technically only strings of characters and a lexical element has no meaning
in and of itself: the meaning depends upon the syntactic role played by the element and the
corresponding semantics. Therefore rules for determining the meaning of lexical elements (for
example, the rules that govern the range of numeric values) are found in the sections on language
syntax - sections 12.4 and 12.5 below - rather than in the current section. There is no limit on the
length of any lexical element. However, software for reading and writing ODL may impose
limitations on the length of text strings, symbol strings and identifiers. It is recommended that at
least 32 characters be allowed for symbol strings and identifiers and at least 400 characters for
text strings.

12.3.1 Numbers

The ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (like 123), but the ODL also provides for integer values in other
number systems (for example, 2#1111011# is the binary representation of the decimal integer
number 123). Real numbers can be represented in simple decimal notation (like 123.4) or in a
scientific notation that includes a base 10 exponent (for example, 1.234E2).

12.3.1.1 Integer Numbers In Decimal Notation

An integer number in decimal notation consists of a string of digits optionally preceded by a
number sign. Unsigned integer numbers are assumed to be positive.

integer :: = [sign] unsigned_integer
unsigned_integer :: = [digit] +
sign ::= + | -

Examples of Decimal Integers

0
123

+440

Chapter 12. Object Description Language Specification and Usage 12-7

-150000

12.3.1.2 Integer Numbers In Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which allows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In general, for a number
base X the digits 0 to X-1 are used. For example, in octal the digits 0 to 7 are allowed. If X is
greater than 10, then the letters A, B, C, D, E, F (or their lower case counterparts) are used as
needed for the additional digits.

A based integer may optionally include a number sign. An unsigned based integer number is
assumed to be positive.

based_integer :: = radix # [sign] [extended_digit] + #
extended_digit :: = digit | letter
radix :: = unsigned_integer

Examples of Based Integers

2#1001011#
8#113#
10#75#
16#4B#
16#+4B#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final
example is the hexadecimal representation of -75 decimal.

12.3.1.3 Real Numbers

Real numbers may be represented in a decimal notation (like 123.4) or in a scientific notation
with a base 10 exponent specified (like 1.234E3). A real number may optionally include a
number sign. Unsigned real numbers are assumed to be positive.

real :: = [sign] unscaled_real | [sign] scaled_real
unscaled_real :: = unsigned_integer. [unsigned_integer] | .unsigned_integer
scaled_real :: = unscaled_real exponent
exponent :: = E integer | e integer

Note that the letter E in the exponent of a real number may appear in either upper or lower case.

 Examples of Real Numbers

0.0

12-8 Chapter 12. Object Description Language Specification and Usage

123.
+1234.56
-.9981
-1.E-3
31459e1

12.3.2 Dates and Times

The ODL has lexical elements to represent dates and times. The formats for dates and times are a
subset of the formats defined by the International Standards Organization Draft Standard
ISO/DIS 8601.

(For information regarding PDS specific use of dates and times, see the Date/Time chapter in this
document.)

12.3.2.1 Date and Time Values

Date and time scalar values represent a date, or a time, or a combination of date and time:

date_time_value :: = date | time | date_time

The following rules apply to date values:

• The year must be in Anno Domini format (i.e., 1990). PDS requires a 4-digit year format be
used (i.e., 2000).

• The month must be a number between 1 and 12.

• The day of month must be a number in the range 1 to 31, as appropriate for the particular
month and year.

• The day-of-year must be in the range 1 to 365, or 366 in a leap year.

The following rules apply to time values:

• Hours must be in the range 0 to 23.

• Minutes must be in the range 0 to 59.

• Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

• Hours must be in the range -12 to + 12 (the sign is mandatory).

Chapter 12. Object Description Language Specification and Usage 12-9

• Minutes, if specified, must be in the range 0 to 59.

12.3.2.2 Implementation of Dates and Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries.

Software for writing ODL shall always output full four-digit year numbers so that the labels will
be valid into the next century.

Times in ODL may be specified with unlimited precision (for example, to nanoseconds). The
actual precision with which times can be represented by label reading/writing software is
determined by the software implementers, based upon limitations of the hardware on which the
software is implemented. Developers of label reading/writing software should document the
precision to which times can be represented.

Software for writing ODL shall not output local time values, since a label may be read in a time
zone other than where it was written. Use either the UTC or zoned time format instead.

12.3.2.3 PDS Implementation of Dates and Times

PDS software for reading ODL labels shall interpret local times to be equivalent to UTC times.
Upon output, a Z will be appended to local times.

12.3.2.4 Dates

Dates can be represented in two formats: as year and day-of-year; and as year, month and day of
month.

date :: = year_doy | year_month_day
year_doy :: = year - doy
year_month_day :: = year - month - day
year :: = unsigned_integer
month :: = unsigned_integer
day :: = unsigned_integer
doy :: = unsigned_integer

Examples of Dates

1990-07-04
1990-158
2001-001

12.3.2.5 Times

12-10 Chapter 12. Object Description Language Specification and Usage

Times are represented as hours, minutes and optionally seconds using a 24-hour clock. Times
may be specified in Universal Time Coordinated (UTC) by following the time with the letter Z
(for Zulu, a common designator for Greenwich Mean Time). Alternately, the time can be
referenced to any time zone by following the time with a number that specifies the offset from
UTC. Most time zones are an integral number of hours from Greenwich, but some are different
by some non-integral time, and both can be represented in the ODL. A time that is not followed
by either the Zulu indicator or a time zone offset is assumed to be a local time.

time :: = local_time | utc_time | zoned_time
local time :: = hour_min_sec
utc_time :: = hour_min_sec Z
zoned_time :: = hour_min_sec zone_offset
hour_min_sec :: = hour: minute [:second]
zone_offset :: = sign hour [: minute]
hour :: = unsigned_integer
minute :: = unsigned_integer
second :: = unsigned_integer | unscaled_real

Note that either an integral or a fractional number of seconds can be specified in a time.

Examples of Times

12:00
15:24:12Z
01:10:39.4575+07 (time offset of 7 hours from UTC)

12.3.2.5.1 Combining Date and Time

A date and time can be specified together using the format below. Either of the two date formats
can be combined with any time format - UTC, zoned or local.

date_time::=date T time

The letter T separating the date from the time can be specified in either upper or lower case.
Note that because this is a lexical element that spaces may not appear within a date, within a time
or before or after the letter T.

Examples of Date/Times

1990-07-04T12:00
1990-158T15:24:12Z
2001-001T01:10:39.457591+7

12.3.3 Strings

Chapter 12. Object Description Language Specification and Usage 12-11

There are two kinds of string lexical elements in ODL: text strings and symbol strings.

12.3.3.1 Text Strings

Text strings are used to hold arbitrary strings of characters.

quoted_text ::= "[character]*"

The empty string -- a quoted text string with no characters within the delimiters -- is allowed.

A quoted text string may not contain the quotation mark, which is reserved to be the text string
delimiter. A quoted text string may contain format effectors, hence it may span multiple lines in
a label: the lexical element begins with the opening quotation mark and extends to the closing
quotation mark, even if the closing mark is on a following line. The rules for interpreting the
characters within a text string, including format effectors, are given in the section on string
values in Section 12.5.

12.3.3.2 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image ID may be a symbol string like ’J123-U2A’, or a camera filter might be a symbol string
like ’UV1.’

quoted_symbol ::= ’[character]+’

A symbol string may not contain any of the following characters:

• The apostrophe character, which is reserved to be the symbol string delimiter

• Format effectors, which means that a symbol string must fit on a single line

• Control characters

12.3.4 Identifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of a symbolic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
"words" in an identifier. The first character of an identifier must be a letter. The last character
cannot be an underscore.

identifier : : = letter [letter | digit | _letter | _digit]*

Because ODL is not case sensitive, lower case characters in an identifier can be converted to

12-12 Chapter 12. Object Description Language Specification and Usage

their upper case equivalent upon input to simplify comparisons and parsing.

Examples of Identifiers
VOYAGER
VOYAGER_2
BLUE_FILTER
USA_NASA_PDS_1_0007
SHOT_1_RANGE_TO_SURFACE

12.3.4.1 Reserved Identifiers

A few identifiers have special significance in ODL statements and they are therefore reserved
and cannot be used for any other purpose (for example, as the name of an object or an attribute):

end end_group end_object
group object begin_object

12.3.5 Special Characters

The ODL is a simple language and it is usually clear where one lexical element ends and another
begins. Spacing characters of format effectors may appear before a lexical element, between any
pair of lexical elements, or after a lexical element without changing the meaning of a statement.

As can be seen in the sections above, many lexical elements incorporate special characters.
Examples are the decimal point in real numbers and the quotation marks that delimit a text
string. Some special characters are lexical elements in their own right. These so-called
delimiters appear within the syntax descriptions in the following section. The following single
characters are delimiters unless they appear within one of the lexical elements described above or
within a text or symbol string.

= The equals sign is the assignment operator.

, The comma separates the elements of an array or a set.

* The asterisk serves as the multiplication operator in units expressions.

/ The slant serves as the division operator within units expressions.

^ The circumflex denotes a pointer to an object.

<> The angle brackets enclose units expressions.

() The parentheses enclose the elements of a sequence.

{ } The braces enclose the elements of a set.

The following two-character sequence is a lexical element.

** Two adjacent asterisks are the exponentiation sign within units
 expressions.

Chapter 12. Object Description Language Specification and Usage 12-13

12.4 Statements

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by
the reserve identifier end.

label ::= [statement]*

 end

The body of a label is built from four types of statements:

statement :: = attribute_assignment_statement |
pointer_statement |
object_statement |
group_statement

Each of the four types of statements is discussed below.

12.4.1 Lines and Records

Labels are also typically composed of lines, where each line is a string of characters terminated
by a format effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format a label into lines:

• There should be at most one statement on a line, although a statement may be more than a
single line in length. As noted in Section 12.3.5 above, format effectors may appear before,
after or between the lexical elements of a statement without changing the meaning of the
statement. For example, the following statements are identical in meaning:

•
FILTER_NAME = {RED, GREEN, BLUE}

FILTER_NAME = {RED,
 GREEN,
 BLUE}

• Each line should terminate with a carriage return character followed immediately by a line
feed character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

• The character immediately following the end statement must be either an optional spacing
character or format effector, such as a space, line feed, carriage return, etc.

A line may include a comment. A comment begins with the two characters /* and ends with the

12-14 Chapter 12. Object Description Language Specification and Usage

two characters */. A comment may contain any character in the ODL character set except format
effectors, which are reserved to mark the end of line (i.e., comments may not be more than one
line long). Comments are ignored when parsing an ODL label. The comment delimiters (/* and
*/) may appear within a text string, but in this case, they do not represent a comment. They are
simply part of the text string. For example, the following is not a correct use of a comment:

NOTE = “All good men come to the /* Example of incorrect comment*/
 aid of their party"

Any characters on a line following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL-
encoded labels in record-oriented files should adhere to the following rules:

• A line of an ODL-encoded label should not cross a record boundary. Each line should be
totally contained within a single record. Any space left over at the end of a record after the
last line in the record should be set to all space characters.

• The remainder of the record that contains the end statement shall be ignored and the data
portion of the file shall be assumed to begin with the next record in sequence.

12.4.2 Attribute Assignment Statement

The attribute assignment statement is the most common type of statement in ODL and is used to
specify the value for an attribute of an object. The value may be a single scalar value, an ordered
sequence of values, or an unordered set of values.

assignment_statement ::= attribute_identifier = value

The syntax and semantics of values are given in Section 12.5.

Examples of Assignments Statements

RECORD_BYTES = 800
TARGET_NAME = JUPITER
SOLAR_LATITUDE = (0.25 <DEG>, 3.00 <DEG>)
FILTER_NAME = {RED,

 GREEN,
 BLUE}

12.4.3 Pointer Statement

The pointer statement indicates the location of an object.

pointer_statement :: = ^object_identifier = value

As with the attribute assignment statement, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

Chapter 12. Object Description Language Specification and Usage 12-15

A common use of pointer statements is to reference a file containing an auxiliary label. For
example:

^STRUCTURE = “TABLE.FMT"

is a pointer statement that points to a file name TABLE.FMT that contains a description of the
structure of the ancillary table from our sample label. Another use of the pointer statement is to
indicate the position of an object within another object. This is often used to indicate the position
of major objects within a file. The following examples are from our sample label:

^ IMAGE = 40
^IMAGE_HISTOGRAM = 840
^ANCILLARY_TABLE = 842

The first pointer statement above indicates that the image is located starting at the 40th record
from the beginning of the file. If an integer value is used to indicate the relative position of an
object, the units of measurement of position are determined by the nature of the object. For files,
the default unit of measurement is records. Alternatively, a units expression can be specified for
the integer value to indicate explicitly the units of measurement for the position. For example,
the pointer

^IMAGE = 10200 <BYTES>

indicates that the image starts 10,200 bytes from the beginning of the file.

The object pointers above reference locations in the same files as the label. Pointers may also
reference either byte or record locations in data files which are detached, or separate, from the
label file:

^IMAGE = ("IMAGE.DAT", 10)
^HEADER = ("IMAGE.DAT", 512 <BYTES>)

12.4.4 OBJECT Statement

The OBJECT statement contains the description of an object. The description typically consists
of a set of attribute assignment statements to establish the values of the object's attributes. If an
object is itself composed of other objects, then OBJECT statements for the component objects
may be nested within the object's description. There is no limit to the depth to which OBJECT
statements can be nested.

The format of the OBJECT statement is:

object_statement :: = object = object_identifier
[statement]*

end_object [= object_identifier]

The object identifier gives a name to the particular object being described. For example, in a file

12-16 Chapter 12. Object Description Language Specification and Usage

containing images of several planets, the image object descriptions might be named
VENUS_IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT
statement is optional, but if it appears it must match the name given at the beginning of the
OBJECT statement.

12.4.4.1 Implementation of OBJECT Statements

It is recommended that all software for writing ODL should include the object identifier at the
end as well as the beginning of every OBJECT statement.

12.4.5 GROUP Statement

The GROUP statement is used to group together statements which are not components of a
larger object. For example, in a file containing many images, the group BEST_IMAGES might
contain the object descriptions of the three highest quality images. The three image objects in the
BEST_IMAGES group don't form a larger object: all they have in common is their superior
quality.

The GROUP statement is also used to group related attributes of an object. For example, if two
attributes of an image object are the time at which the camera shutter opened and closed, then the
two attributes might be grouped as follows:

GROUP = SHUTTER_TIMES
 START = 12:30:42.177
 STOP = 14:01:29.265
END_GROUP = SHUTTER_TIMES

The format of the group statement is as follows:

group_statement :: = group = group_identifier
[statement]*

end_group [= group_identifier]

The group identifier gives a name to the particular group, as shown in the example for shutter
times above. The object identifier at the end of the GROUP statement is optional, but if it
appears it must match the name given at the beginning of the GROUP statement. Groups may be
nested within other groups. There is no limit to the depth to which groups can be nested.

12.4.5.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL should include the group identifier at the
end as well as the beginning of every GROUP statement.

12.4.5.2 PDS Usage of GROUP

Although the ODL supports the GROUP statement, the PDS does not recommend its use because
of confusion concerning the difference between OBJECT and GROUP.

Chapter 12. Object Description Language Specification and Usage 12-17

12.5 Values

ODL provides scalar values, ordered sequences of values, and unordered sets of values.

value :: = scalar_value | sequence_value | set_value

A scalar value consists of a single lexical element:

scalar_value :: = numeric_value |
 date_time_value |
 text_string_value |
 symbol_value

The format and use of each of these scalar values is discussed in the sections below.

12.5.1 Numeric Values

A numeric scalar value is either a decimal or based integer number or a real number. A numeric
scalar value may optionally specify a units expression.

numeric_value :: = integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

12.5.2 Units Expressions

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, and not the units of
measurement. The ODL, however, can represent both the magnitude and the units of a
measurement. A units expression has the following format:

units_expression :: = < units_factor [mult_op units_factor] * >
units_factor :: = units_identifier [exp_op integer]
mult_op :: = * | /
exp_op :: = **

A units expression is always enclosed within angle brackets. The expression may consist of a
single units identifier like KM (for kilometers), or SEC (for seconds). Examples are the distance
1.341E6 <KM> and the time 1.024 <SEC>. More complex units can also be represented; for
example, the velocity 3.471 <KM/SEC> or the acceleration 0.414 < KM/SEC/SEC>. There is
often more than one way to represent a unit of measure. For example:

• 0.414 <KM/SEC/SEC>

• 0.414 <KM/SEC**2>

12-18 Chapter 12. Object Description Language Specification and Usage

• 0.414 <KM*SEC**-2>

are all valid representations of the same acceleration. The following rules apply to units
expressions:

• The exponentiation operator can specify only a decimal integer exponent. The exponent
value may be negative, which signifies the reciprocal of the units. For example, 60.15 <
HZ> and 60.15 <SEC**-1> are both ways to specify a frequency.

• Individual units may appear in any order. For example, a force might be specified as either
1.55 <GM*CM/ SEC**2> or 1.55 <CM*GM/SEC**2>.

12.5.2.1 Implementation of Numeric Values

There is no defined maximum or minimum magnitude or precision for numeric values. In
general, the actual range and precision of numbers that can be represented will be different for
each kind of computer used to read or write an ODL-encoded label. Developers of software for
reading/writing ODL should document the following:

• The most positive and most negative integer numbers that can be represented.

• The most positive and most negative real numbers that can be represented.

• The minimum number of significant digits which a real number can be guaranteed to have
without loss of precision. This is to account for the loss of precision that can occur when
representing real numbers in floating point format within a computer. For example, a 32-bit
floating point number with 24-bits for the fraction can guarantee at least 6 significant digits
will be exact (the seventh and subsequent digits may not be exact because of truncation and
round-off errors).

If software for reading ODL encounters a numeric value that is too large to be represented, then
the software shall report an error to the user.

12.5.3 Text String Values

A text string value consists of a text string lexical element:

text_string_value :: = quoted_text

12.5.3.1 Implementation of String Values

A text string read in from a label is reassembled into a string of characters. The way in which the
string is broken into lines in a label doesn't affect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

• If a format effector or a sequence of format effectors is encountered within a text string, then
the effector or sequence of effectors is replaced by a single space character, unless the last

Chapter 12. Object Description Language Specification and Usage 12-19

character is a hyphen (dash) character. Any spacing characters at the end of the line are
removed and any spacing characters at the beginning of the following line are removed. This
allows a text string in a label to appear with the left and right margins set at arbitrary points
without changing the string value. For example, the following two strings are the same:

“To be or not to be”

and

“To be or
not to be"

• If the last character on a line prior to a format effector is a hyphen (dash) character, then the
hyphen is removed. Any spacing characters at the beginning of the following line are
removed. This follows the standard convention in English of using a hyphen to break a word
across lines. For example, the following two strings are the same:

“The planet Jupiter is very big”

and

“The planet Jupi-
ter is very big”

• Control codes, other than the horizontal tabulation character and format effectors, appearing
within a text string are removed.

12.5.3.1.1 PDS Text String Formatting Conventions

The PDS defines a set of format specifiers that can be used in text strings to indicate the
formatting of the string on output. These specifiers can be used to indicate where explicit line
breaks should be placed, and so on. The format specifiers are:

• \n - Indicates that an end-of-line sequence should be inserted.

• \t - Indicates that a horizontal tab character should be inserted.

• \f - Indicates that a page break should be inserted.

• \v - Must be used in pairs, begin and end. Interpreted as verbatim.

• \\- Used to place a backslash in a text string.

For example, the string

“This is the first line \n and this is the second line.”

12-20 Chapter 12. Object Description Language Specification and Usage

on output will print as:

This is the first line
and this is the second line.

Note that these format specifiers have meaning only when a text string is printed, and not when
the string is read in or stored.

12.5.4 Symbolic Literal Values

A symbolic value may be specified as either an identifier or a symbol string:

symbolic-value :: = identifier | quoted_symbol

The following statements assign attributes to symbolic values specified by identifiers:

TARGET_NAME = IO
SPACECRAFT_NAME = VOYAGER_2
SPACECRAFT_NAME = "VOYAGER-2"
SPACECRAFT_NAME = "VOYAGER 2"
REFERENCE_KEY_ID = SMITH1997
REFERENCE_KEY_ID = "LAUREL&HARDY1997"

The quotes must be used if the symbolic value does not have the proper format for an identifier
or if it contains characters not allowed in an identifier. For example, the value ’FILTER_+_7’
must be enclosed within quotes, since this would not be a legal ODL identifier. Similarly, the
symbolic value ’U13-A4B’ must be in quotes because it contains a special character (the dash)
not allowed in an identifier. There is no harm in putting a legal identifier within quotes; for
example:

SPACECRAFT_NAME = "VOYAGER_2"

is equivalent to the last example above.

Symbolic values may not contain format effectors, i.e., may not cross a line boundary.

12.5.4.1 Implementation of Symbolic Literal Values

Symbolic values will be converted to upper case on input. This means that a lowercase string is
converted to an equivalent uppercase string; as in the following example:

Original string: SPACECRAFT_NAME = "Voyager_2"
Converted string: SPACECRAFT_NAME = "VOYAGER_2"

Chapter 12. Object Description Language Specification and Usage 12-21

12.5.4.2 PDS Recommendation on Symbolic Literal Values

Since the current use of the ODL within the PDS does not require the explicit specification of
symbolic literals or symbol strings, the PDS recommends that double quotation marks (") be
used instead of apostrophes.

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one and two dimensional sequences are allowed.

sequence_value :: = sequence_1D | sequence_2D
sequence_1D :: = (scalar_value [, scalar_value]*)
sequence_2D :: = ([sequence _1D] +)

A sequence may have any kind of scalar value for its members. It is not required that all the
members of the sequence be of the same kind of scalar value. Thus a sequence may represent a
heterogeneous record. Each member of a two dimensional sequence is a one dimensional
sequence. This can be used, for example, to represent a table of values. The order in which
members of a sequence appear must be preserved. There is no upper limit on the number of
values in a sequence.

For example: AVERAGE_ECCENTRICITY = (0,1,2,3,4,5,9)

12.5.6 Sets

Sets are used to specify unordered values drawn from some finite set of values.

set_value :: = {scalar_value [, scalar_value]*} | {}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets
with nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. There is no upper limit on the number of values in
a set.

For example: FILTER_NAME = { RED, BLUE, GREEN, HAZEL }

12.5.6.1 PDS Implementation of Sets

The PDS allows only symbol values and integer values within sets.

12-22 Chapter 12. Object Description Language Specification and Usage

12.6 ODL Summary

Character Set (12.2)
The ODL uses the ISO 646 character set (the American version of the ISO 646 standard is
ASCII). The ODL character set is partitioned as follows:

character : : = letter | digit | special_character |
 spacing_character | format_effector |
 other_character

letter : : = A-Z | a-z
digit : : = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8| 9
special_character : : = { | } | (|) | + | - | . | " | ’ | = |

 _ | , | / | * | : | # | & | ^ | < | >
spacing_character : : = space | horizontal tabulation
format_effector : : = carriage return | line feed |

 form feed | vertical tabulation
other_character :: = ! | $ | % | ; | ? | @ | [|] | ` | ~ |

 vertical bar | other control characters

Lexical Elements (12.3)
integer : : = [sign] unsigned_integer
unsigned_integer : := [digit]+
sign :: = + | -
based_integer : : = radix # [sign] [extended_digit]+ #
extended_digit : : = digit | letter
radix : : = unsigned_integer
real : : = [sign] unscaled_real | [sign] scaled_real
unscaled_real : : = unsigned_integer . [unsigned_integer] |

 . unsigned_integer
scaled_real : : = unscaled_real exponent
exponent : : =E integer | e integer
date : : =year_doy | year_month_day
year_doy : : =year - doy
year_month_day : : =year - month - day
year : : =unsigned_integer
month : : =unsigned_integer
day : : =unsigned_integer
doy : : =unsigned_integer
time : : =local_time | utc_time | zoned_time
local_time : : =hour_min_sec
utc_time : : =hour_min_sec Z
zoned_time : : =hour_min_sec zone_offset
hour_min_sec : : =hour : minute [: second]
zone_offset : : =sign hour [: minute]
hour : : =unsigned_integer
minute : : =unsigned_integer
second : : =unsigned_integer | unscaled_real
date_time : : =date T time
quoted_text : : =“[character]*"
quoted_symbol : : =’[character]+'
identifier : : = letter [letter | digit | _letter | _digit]*

Statements (12.4)

label : : = [statement]*
 end

statement : : = assignment_stmt | pointer_stmt |

Chapter 12. Object Description Language Specification and Usage 12-23

 object_stmt | group_stmt
assignment_stmt : : = attribute_identifier = value
pointer_stmt : : = ^ object_identifier = value
object_stmt : : = object = object_identifier

[statement]*
 end_object [= object_identifier]

group_stmt : : = group = group_identifier
[statement]*

 end_group [= group_identifier]

Values (12.5)

value : : = scalar_value | sequence_value | set_value
scalar_value : : = numeric_value | date_time_value |

 text_string_value | symbolic_value
numeric_value : : = integer [units_expression] |

 based_integer [units_expression] |
 real [units_expression]

units_expression : : =<units_factor[mult_op units_factor]* >
units_factor : : = units_identifier [exp_op integer]
mult_op : : = * | /
exp_op : : = **
date_time_value : : = date | time | date_time
text_string_value : : = quoted_text
symbolic_value : : = identifier | quoted_symbol
sequence_value : : =sequence_lD | sequence_2D
sequence_1D : : = (scalar_value [, scalar_value]*)
sequence_2D : : = ([sequence_lD]+)
set_value : : = { scalar_value [,scalar_value]* } | { }

12.7 Differences Between ODL Versions

This appendix summarizes the differences between the current Version 2 of ODL and the
previous Versions 0 and 1. Software can be constructed to read all three versions of ODL.
However, it is important that software for writing labels only write labels that conform to ODL
Version 2.

12.7.1 Differences from ODL Version 1

Version 1 labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and it had a more restrictive definition
for sets (which were limited to integer or symbolic literal values) and for sequences (which were
limited to arrays of homogeneous values). The following sections detail non-compatible
differences and how they can be handled by software writers.

12.7.1.1 Ranges

Version 1 of the ODL had a specific notation for integer ranges:

range_value :: = integer..integer

This notation is not allowed in ODL Version 2. A parser may still recognize the ’double-dot'

12-24 Chapter 12. Object Description Language Specification and Usage

range notation. On output, a range shall be encoded as a two value sequence, with the low-value
of the range being the first element of the sequence and the high-value being the second element
of the sequence.

12.7.1.1.1 Delimiters In Sequences and Sets

The individual values in sets and sequences could be separated by a comma or by a spacing
character. In Version 2, a comma is required. A parser can allow spacing characters between
values as well as commas. Software that writes ODL should place commas between all values in
a sequence or set.

12.7.1.1.2 Exponentiation Operator in Units Expressions

In Version 1 of the ODL the circumflex character (^) was used as the exponentiation operator in
units expressions rather than the two-asterisk sequence (**). Parsers may still allow the
circumflex to appear within units expressions as an exponentiation operator. Software for writing
ODL should use only the ** notation.

12.7.2 Differences from ODL Version 0

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM
disks. The major aspect of Version 0 is that it did not provide the OBJECT statement: all of the
attributes specified in a label described a single object - namely the file that contained the label
(or that was referenced by a pointer).

12.7.2.1 Date—Time Format

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date-time format. The format for
Version 0 dates and date-times is as follows:

date :: = year / month / day_of_month | year / day_of_year
date_time :: = date - time zone
zone :: = < identifier>

The definition of time in ODL Version 0 was a subset of ODL Version 2; therefore parsers that
handle Version 2 time formats will also handle Version 0 times. Software for writing ODL must
output dates and date-times in the Version 2 format only.

12.7.3 ODL/PVL Usage

A concept for a Parameter Value Language/Format (PVL) is being formalized by the
Consultative Committee for Space Data Systems (CCSDS). It is intended to provide a human
readable data element/value structure to encode data for interchange. The CCSDS version of the

Chapter 12. Object Description Language Specification and Usage 12-25

PVL specification is in preliminary form.

Some organizations which deal with the PDS have accepted PVL as their standard language for
product labels. Largely because PVL is a superset of ODL, some PVL constructs are not
supported by the PDS. In addition, some ODL constructs may be interpreted differently by PVL
software.

The ODL/PVL usage standard defines restrictions on the use of ODL/PVL in archive quality
data sets. These restrictions are intended to ensure the compatibility of PVL with the Object
Description Language (ODL) and existing software.

1. Labels constructed using PVL may be attached, embedded in the same file as the
data object it describes, or detached, residing in a separate file and pointing to the
data file the label describes.

2. All statements shall be terminated with a <CR> <LF> pair. Semicolons shall not be
used to terminate statements.

3. Only alphanumeric characters and the underscore character shall be used in data
elements and undelimited text values (literals). In addition, data element and
undelimited text values must begin with a letter.

4. Keywords shall be 30 characters or less in length.

5. Keywords and standard values shall be in upper case. Literals and strings may be in
upper case, lower case, or mixed case.

6. Comments shall be contained on a single line, and a comment terminator (*/) shall
be used. Comments shall not be embedded within statements. Comments shall not
be used on the same line as any statement if the comment precedes the statement.
Comments may be on the same line as a statement if the comment follows the
statement and is separated from the statement by at least one white space, but this is
not recommended.

7. Text values that cross line boundaries shall be enclosed in double quotation marks
(“ ”).

8. Values that consist only of letters, numbers, and underscores (and that begin with a
letter) may be used without quotation marks. All other text values must be enclosed
in either single (’ ’) or double (“ ”) quotation marks.

9. Sequences (arrays) shall be limited to 2 dimensions. NULL (empty) sequences are
not allowed. Sets shall be limited to one dimension. In other words, sets and
sequences shall not be used inside a set.

10. Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark-

12-26 Chapter 12. Object Description Language Specification and Usage

ers shall be used.

11. Units expression shall only be allowed following numeric values (e.g,
“DATA_ELEMENT = 7 <BYTES>” is valid. but “DATA_ELEMENT = MANY
<METERS>” is not.

12. Units expression shall include only alphanumeric characters, the underscore, and
the symbols *,/,(,), and **. (The last represents exponentiation).

13. Signs shall not be used in non-decimal numbers. (e.g., “2#10001#” is valid, but “-
2#10001#” and “2#-10001#” are not.) Only the bases 2,8, and 16 shall be used in
non-decimal numbers.

14. Alternate time zones (e.g., YYYY-MM-DDTHH:MM:SS.SSS + HH:MM) shall not
be used. Only the format YYYY-MM-DDTHH:MM:SS.SSS shall be used.

15. Always provide all digit positions in dates and times. Zeros shall be used to replace
missing digits.

16. An END statement shall be included at the end of the ODL/PVL statement list.

The following are guidelines for formatting ODL/PVL expressions.

1. The assignment symbol (=) shall be surrounded by blanks.

2. Assignment symbols (=) should be aligned if possible.

3. Keywords placed inside an aggregator (OBJECT or GROUP) shall be indented with
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP state-
ments which enclose them.

4. PDS label lines shall be 80 characters or less in length, including the end-of-
statement <CR> <LF> delimiter. While 80 characters can be displayed on most
screens, some editors and databases will wrap or truncate lines that exceed 72
characters.

5. TABs shall not be used in PDS Labels. Although both ODL and PVL allow the use
of TABs some simple parsers cannot handle them. Use spaces instead.

Chapter 13. PDS Objects 13-1

Chapter 13

PDS Objects

The Planetary Data System has designed a set of standard objects to be used for submitting
catalog object templates as well as for labeling data products. These standard objects, along with
definitions of individual keywords comprising those objects, are defined in the Planetary Science
Data Dictionary. In addition, object definitions and examples are also included as Appendix A
and Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there are two
categories, generic and specific. A generic object is the universal definition of an object, or
superset of keywords that can be used. A specific object is a subset used for a specific data
product to allow effective use of validation tools.

Generic objects are designed and approved by the Planetary Data System. The elements used to
define objects are classified either as Required or Optional. The Required and Optional member
elements are explicitly listed while the Optional member elements may include any element in
the data dictionary. A Specific object is defined for a particular data product and is based in a
selected Generic object. All Required elements and selected Optional elements from the Generic
object are used to define the Specific object.

Using the generic object definition as a guide and consulting with a Central Node Data Engineer,
a user may then customize the object by first using all the required keywords, and then choosing
which optional keywords apply to the data product. In addition, any keywords listed in the
Planetary Science Data Dictionary can be chosen for special purposes. The resulting object will
be a specific object that is subject to approval during a design review.

The following examples illustrate the migration from the generic IMAGE object to a specific
IMAGE object and then an instance of that specific IMAGE. Note that when a specific case is
used, that usage should be consistent for all labels defining a like data product.

OBJECT = GENERIC_OBJECT_DEFINITION
NAME = IMAGE
STATUS_TYPE = APPROVED
STATUS_NOTE = "V2.1 1991-01-20 MDM New Data Object Definition"
DESCRIPTION = "An image object is a regular array of sample values. Image
objects are normally processed with special display tools to produce a visual representation of the sample values. This is done
by assigning brightness levels or display colors to the various sample values. Images are composed of LINES and SAMPLES.
They may contain multiple bands, in one of several storage orders.

Note: Additional engineering values may be prepended or appended to each LINE of an image, and are stored as concatenated
TABLE objects, which must be named LINE_PREFIX and LINE_SUFFIX. IMAGE objects may be associated with other

13-2 Chapter 13. PDS Objects

objects, including HISTOGRAMs, PALETTEs, HISTORY and TABLEs which contain statistics, display parameters,
engineering values or other ancillary data."

SOURCE_NAME = "PDS CN/M.Martin"
REQUIRED_ELEMENT_SET = {LINE_SAMPLES, LINES, SAMPLE_BITS,
 SAMPLE_TYPE}
OPTIONAL_ELEMENT_SET = {BAND_SEQUENCE, BAND_STORAGE_TYPE,

BANDS, CHECKSUM, DERIVED_MAXIMUM,
DERIVED_MINIMUM, DESCRIPTION,
ENCODING_TYPE, FIRST_LINE,
FIRST_LINE_SAMPLE, INVALID,
LINE_PREFIX_BYTES, LINE_SUFFIX_BYTES, MISSING,

 OFFSET, SAMPLE_BIT_MASK, SAMPLING_FACTOR,
SCALING_FACTOR, SOURCE_FILE_NAME,
SOURCE_LINES, SOURCE_LINE_SAMPLES,
SOURCE_SAMPLE_BITS, STRETCHED_FLAG,
STRETCH_MAXIMUM, STRETCH_MINIMUM, PSDD}

REQUIRED_OBJECT_SET = “N/A”
OPTIONAL_OBJECT_SET = “N/A”

OBJECT_CLASSIFICATION_TYPE = STRUCTURE

OBJECT = ALIAS
NAME = “N/A”
USAGE_NOTE = “N/A”
END_OBJECT = ALIAS

END_OBJECT = GENERIC_OBJECT_DEFINITION

__

 This next example illustrates IMAGE object definition being used for a specific case.
__

OBJECT = SPECIFIC_OBJECT_DEFINITION
NAME = XYZ_IMAGE
STATUS_TYPE = APPROVED
STATUS_NOTE = "V2.1 1991-02-10 TMA New specific data object definition"
DESCRIPTION = "The XYZ image is..."

SOURCE_NAME = "PDS CN/M.Martin"
REQUIRED_ELEMENT_SET = {LINE_SAMPLES, LINES, SAMPLE_BITS,
 SAMPLE_TYPE, SAMPLING_FACTOR,
 SOURCE_FILE_NAME,
 SOURCE_LINES, SOURCE_LINE_SAMPLES,
 SOURCE_SAMPLE_BITS, FIRST_LINE,
 FIRST_LINE_SAMPLE}

OBJECT_CLASSIFICATION_TYPE = STRUCTURE

OBJECT = ALIAS
NAME = “N/A”
USAGE_NOTE = “N/A”
END_OBJECT = ALIAS

END_OBJECT = SPECIFIC_ OBJECT_DEFINITION

Chapter 13. PDS Objects 13-3

13.2 Primitive Objects

Generic objects have a subclass called primitive objects that include ARRAY, COLLECTION,
ELEMENT, and BIT_ELEMENT. A primitive object is primarily used as the foundation for
defining the elementary structure of PDS objects that have either more abstract or more
uncommon layouts than more common structures like TABLES or IMAGEs. For example, a
simple camera image abstractly described by a PDS IMAGE object, shown in Example 1, could
alternately be described using a 2-dimensional ARRAY object, as shown in Example 2.

Example 1 Example 2

OBJECT = IMAGE OBJECT = ARRAY
LINES = 800 AXES = 2
LINE_SAMPLES = 600 AXIS_ITEMS = (800, 600)
. . . AXIS_NAME = (LINES, LINE_SAMPLES)
END_OBJECT = IMAGE . . .

END_OBJECT = ARRAY

However, given the PDS objective of defining a robust object model for planetary science data, it
is recommended that primitive objects only be used when other PDS objects result in a
misleading or incorrect description of the data being labeled.

Chapter 14. Pointer Usage 14-1

Chapter 14

Pointer Usage

Within PDS labels, pointers are used to indicate the locations of objects within the same file or
references to external files. A pointer statement is indicated in a PDS label or catalog object by
an ASCII caret (^).

14.1 Types of Pointers

Pointer statements fall into three main categories: data location pointers, include pointers, and
related information pointers.

14.1.1 Data Location Pointers (Data Object Pointers)

The most common use of pointers occurs in PDS labels to link together data object descriptions
with the actual data. The syntax for the values of these pointers depends on whether the label is
attached or detached from the data it describes. Examples of these data location pointer
statements are:

(1) ^IMAGE = 12
(2) ^IMAGE = 600 <BYTES>

(3) ^INDEX_TABLE = "INDEX.TAB"
(4) ^SERIES = ("C100306.DAT", 2)
(5) ^SERIES = ("C100306.DAT", 700 <BYTES>)

The first and second examples illustrate pointers in attached labels. This type of pointer allows
reading software to scan the label for the appropriate pointer, and then skip right to the data at its
location elsewhere in the file. In the first example, the data begin at record 12 of the labeled file.
In the second example, the data begin at byte 600 of the labeled file.

In examples 3 through 5, external data files are referenced. As these pointers occur in detached
labels, they must identify a file name, and if the data do not begin at record 1 of the data file, a
location as well. In example 3, the data begin at record 1 of the data file "INDEX.TAB". In
example 4, the data begin at record 2 of the data file, "C100306.DAT". In example 5, the data
begin at byte 700 of the data file.

14.1.2 Include Pointers

Another common use of pointers occurs in PDS labels or completed catalog templates that
reference external files to be included directly at the location of the pointer statement. These are
classified as 'include' type pointers since they act like #INCLUDE statements in C program

14-2 Chapter 14. Pointer Usage

source files. Pointers with the class names of STRUCTURE, CATALOG, and
MAP_PROJECTION fall into this category. As illustrated below, include files contain only PDS
data object definitions or completed catalog object templates.

Examples of include pointer statements are:

(1) ^STRUCTURE = "ENGTAB.FMT"
(2) ^STRUCTURE = "IMAGE.FMT"
(3) ^CATALOG = "CATALOG.CAT"
(4) ^DATA_SET_MAP_PROJECTION = "DSMAPDIM.CAT"

In the first example, an external structure file is referenced from a TABLE object. The file
ENGTAB.FMT contains the column object definitions needed to complete the TABLE object.
In cases such as this, column objects would be stored in a separate file if the table is especially
large (with many columns), making its label unwieldy, or if the file containing column objects
can be referenced by more than one label through the use of the pointer.

In the second example, the structure of an image (i.e., all statements beginning with the
OBJECT = IMAGE statement and ending with the END_OBJECT = IMAGE statement) is
defined in an external file called IMAGE.FMT.

In the third example, the external file, CATALOG.CAT, is pointed to from the VOLUME object
in order to provide a full set of catalog information associated with the volume.

In the fourth example, the external file, DSMAPDIM.CAT, is referenced in the
IMAGE_MAP_PROJECTION object to complete the map projection information associated
with the image.

14.1.3 Related Information Pointers (Description Pointers)

The last type of use of pointer statements occurs in PDS labels that reference external files that
provide additional documentation that may be of special use to a human reader of the label.
These files are indicated by the DESCRIPTION or DESC class words, and reference text files
that are not written in ODL. This pointer is not meant to refer to software tools.

An example of a description pointer statement is:

^DESCRIPTION = "TRK_2_25.ASC"

In this example, the pointer references a PDS-labeled external ASCII document file,
TRK_2_25.ASC, which provides a detailed description of the data.

14.2 Rules for Resolving Pointers

The following set of rules exist for resolving pointer statements that reference external files:

For any pointer statement in FILE_A,

Chapter 14. Pointer Usage 14-3

(1) Look in the same directory as FILE_A

(2a) For a single physical volume (no logical volumes), look in the following top level
directory:

Pointer Directory
 ^STRUCTURE LABEL
 ^CATALOG CATALOG
 ^DATA_SET_MAP_PROJECTION CATALOG*
 ^INDEX_TABLE INDEX
 ^DESCRIPTION or ^TEXT DOCUMENT

(2b) Within a logical volume, look in the top level subdirectory specified by the LOGICAL_
VOLUME_PATH_NAME keyword:

Pointer LOGICAL_VOLUME_PATH_NAME /
Directory

 ^STRUCTURE LABEL
 ^CATALOG CATALOG
 ^DATA_SET_MAP_PROJECTION CATALOG*
 ^INDEX_TABLE INDEX
 ^DESCRIPTION or ^TEXT DOCUMENT

* Note: For volumes using PDS Version 1 or 2 standards, the MAP_PROJECTION files may be
 located in the LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

Chapter 15. Record Formats 15-1

Chapter 15

Record Formats

The choice of the proper record format is determined by the applications which the data will
support. In general, fixed length records are well-suited to the storage of binary data files, such
as images, binary tables or qubes. These files are expected to be transported and used in
structured environments. They shall also be used for ASCII tables to promote transportability.
Input/output operations with FIXED_LENGTH files will use read and write statements which
read RECORD_BYTES number of bytes with each operation.

Variable length files are less transportable and require special software to read. Their use is
discouraged except in instances where they may optimize storage efficiency or access. An
example of such an application is the compressed image format being used for CD-ROM
storage.

For CD-ROMs that are meant to be VAX/VMS-compatible (ie., for CDs with XARs), it is
recommended that all records in fixed length or variable length files contain an even number of
bytes. Thus records which contain an odd number of bytes would be padded by one byte to give
them an even length.

Stream records should be used for text files for ease of transportation to different computer
systems. Input/output operations with stream files will generally use string-oriented access,
retrieving a record from the file each time.

Table 15.1: Recommended Record Formats

RECORD_TYPE=FIXED RECORD_TYPE=STREAM RECORD_TYPE=VARIABLE

 Data format BINARY, ASCII ASCII BINARY
 Environment STRUCTURED ADHOC VERY STRUCTURED
 Data volume LARGE SMALL, MEDIUM VERY LARGE
 Input / Output READ / WRITE STRING I/O CUSTOM, SPICE

15.1 Fixed Length Record Formats

Fixed length record formats normally use a physical record length (RECORD_BYTES) which
corresponds directly to the logical length of the data objects (that is, one physical record for each
image line, or one physical record for each row of a table). In some cases, logical records are
blocked into larger physical records to provide more efficient storage and access to the data. This
blocking is still an important consideration when storing data on magnetic tape, (which requires
a gap on the tape between records), but is not generally a consideration in data sets stored on

15-2 Chapter 15. Record Formats

magnetic or CD-ROM disks. In other cases, the physical record length is arbitrary, and only
specifies a unit of data for input/output operations, as in FITS format files or USGS PICS
images.

The use of a record length which matches the size of the primary data object in a file is
recommended, to provide fairly simple file access with a variety of applications. In this
approach, objects within a file are all stored in physical records of RECORD_BYTES length.
Figure 15.1 illustrates the physical and logical structure used to build a standard PDS
FIXED_LENGTH file.

Figure 15.1 Physical and Logical Structure for Fixed Length Files

15.2 Stream Record Formats

Stream records consist of ASCII text delimited with a carriage return (CR) and line feed (LF)
sequence. Different computers interpret these codes differently. For example, IBM PC’s use the
two-byte CR/LF sequence to terminate a line of text. UNIX systems use only a line feed. The
Macintosh uses only a carriage return. VAX computers support these various formats as stream
files, but prefer to store text files internally as variable length records.

Despite the confusion, stream files can easily be transmitted via text-oriented communications
facilities like NASAMAIL, Eudora, or QuickMail. In addition, most file transfer protocols
(KERMIT, FTP) will automatically make the needed conversions when stream files are
transported between different computers.

PDS has adopted the CR/LF as the standard line delimiter for archival products. Note, in
particular, that CR/LF is the required line terminator for all PDS labels and catalog files. This is
the only end-of-line sequence that insures that text file will be viewable on all computer systems.

Chapter 15. Record Formats 15-3

System utilities are available on the various computer types to convert this format to the internal
format if necessary.

Macintosh - Apple File Exchange, MS-DOS to Mac option.
Unix - Translate utility (tr-d’\15’ <input_file>output_file)

The stream format is recommended for the transfer and archive of text and for files containing
detached labels. While stream format can be used for ASCII tables, it is recommended that the
FIXED_LENGTH format be used when storing these tables on archival or distributable media
(CD-ROM).

15.3 Variable Record Formats

A third category of record type is variable length. The use of variable length records is
discouraged, since they are operating-system dependent. They should only be used in the
following circumstances:

• Software that can operate on a variety of hosts is provided along with the data. For example,
the Voyager CD-ROM disks contain variable length compressed images, along with a
decompression program for VAX, PC, Macintosh and UNIX systems. These programs will
reformat the data to a variety of user-selectable formats.

• The files are only intended for use on one computer system. For example, the Viking IRTM
CD-ROM utilizes VAX/VMS variable length formats for software and command files
because the software cannot be used unless it is in this format.

PDS data files using variable length records shall follow the VAX/VMS conventions where the
records are preceded by a 2-byte (LSB first or swapped) integer which defines the length of the
record with no carriage control. The reason for this choice is that VAX/VMS supports variable
length records and numerous planetary science data files are stored in this format.

15.4 Undefined Record Formats

Undefined record formats are those which have no implied record structure. For files with
attached labels, the label portion should be written using undefined record format and should use
record terminators as in the stream case. When data are written using undefined format, no
record terminators or specific record length is implied; it is assumed to be a stream of bytes. It is
recommended that fixed length records rather than undefined record format be used whenever
possible.

15.5 Detached Label Files

Detached label files should be in stream record format. The data elements in a detached label
ALWAYS REFER TO THE DATA FILE, not to the detached label file. Thus a
RECORD_TYPE = FIXED_LENGTH data element in a label file refers to the record type of the

15-4 Chapter 15. Record Formats

data file, not the label file itself. Detached label files shall carry the file extension “.LBL” so that
they can be easily identified by users.

Chapter 16. SFDU Usage 16-1

Chapter 16

SFDU Usage

The SFDU Usage Standard defines restrictions on the use of Standard Formatted Data Units
(SFDUs) in archive quality data sets. PDS does not require that data products are packaged
as SFDUs. However, if data products are packaged as SFDUs, the following standards are
in effect.

A recommendation for the standardization of the structure and construction rules of SFDUs for
the interchange of digital space-related data has been prepared by the Consultative Committee
for Space Data Systems (CCSDS). An SFDU is a type-length-value object. More simply stated,
each SFDU consists of a type identifier which indicates the type of data within the SFDU, a
length field which either states the length of the data or indicates how the data are delimited, and
a value field which is the data itself. Both the type and the length fields are included in a 20 byte
label which will be called an SFDU label in this document. The value field immediately follows
the 20 byte SFDU Label. For PDS data products, the value field contains the PDS label including
one or more data object definitions (such as an image).

There are three versions of SFDUs. In Version 1, the length of an SFDU was represented in
binary. In Version 2, the length could also be represented in ASCII. In Version 3, the length can
be represented in binary, ASCII, or using one of several delineation techniques. Unless
previously negotiated, all PDS data products packaged as SFDUs shall be constructed using
Version 3 SFDU Labels.

A Version 3 SFDU label consists of the following parts:
l) Control Authority ID 4 Bytes

2) Version ID 1 Byte

3) Class ID 1 Byte

4) Delimiter Type 1 Byte

5) Spare 1 Byte

6) Description Data Unit ID 4 Bytes

7) Length 8 Bytes

The Control Authority ID and the Description Data Unit ID together form an identifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary) and syntactic (Object Definition Language, 2.0) description of the value field.

Version 3 allows delimitation of SFDUs by end-of-file or by start markers and end markers
rather than by explicit byte counts. Further details of the SFDU architecture will not be discussed
here. Other sources of information can be found in the SFDU References listed in the
Introduction to this document.

16-2 Chapter 16. SFDU Usage

Since archive quality data sets are internally defined, only a limited set of SFDU labels are used
to identify the files on a data volume. The full suite of available SFDU classes is not used in the
packaging of PDS data products. The PDS has adopted this philosophy in order to simplify not
only the archive products themselves, but also the software processing of those products. PDS
labels are included in the data products, and the information in these PDS Labels is considered
more than adequate for data identification and scientific analysis.

The standard usage of SFDUs by PDS in current missions and data restoration is different than
the usage of SFDUs in data products from upcoming missions fully supported by the JPL
Advanced Multi-Mission Operations System (AMMOS). The following sections define the
standard usage of SFDUs for each source of data.

Two SFDU organizations are allowed in PDS data products. The first organization (the ZI
Structure) has been used historically in PDS data products from restoration and past missions.
The second organization (the ZKI organization) is required for data products which pass through
the JPL Advanced Multi-Mission Operations System (AMMOS) Project Database.

16.1 The ZI SFDU Organization

Any PDS data products that are packaged as SFDUs and are not required to pass through the
AMMOS Project Database as part of an active mission may use the following SFDU
organization.

Each instance of a data product (file) in a data set shall include two (and only two) SFDU labels.
These are a Z Class SFDU label and an I Class SFDU label. The two SFDU labels are
concatenated (i.e. Z, then I) and left justified in the first line or record of the PDS label for each
data product. (See Figure 16.1.) In the case of data products with detached PDS labels, the two
SFDU labels shall appear in the first record of the PDS label files and no SFDU labels appear in
the data object files. (See Figure 16.2.)

Figure 16.1 Attached PDS Label Example for non-AMMOS compatible products

Chapter 16. SFDU Usage 16-3

Figure 16.2 Detached PDS Label Example for non-AMMOS compatible products

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Class indicates that the
value field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation
consists of only the I Class SFDU. This label also indicates that the delimiter type is End-of-File
and that this SFDU (data product) is terminated by a single End-of-File. It shall be formed as
follows:
1) Control Authority ID CCSD

2) Version ID 3

3) Class ID Z

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID 0001

7) Length Field 00000001

Example: CCSD3ZF0000l0000000l

The second SFDU label shall be an I Class Version 3 SFDU label. Class I indicates that the value
field (everything after the second 20 bytes) is application data, the PDS label and the data
object(s). The Data Description Unit ID of PDSX indicates that the data product uses the Object
Description Language (ODL) syntax and the Planetary Science Data Dictionary semantics to

16-4 Chapter 16. SFDU Usage

present data descriptive information. This SFDU label also indicates that the SFDU (data
products) will be terminated by a single End-of-File. It shall be formed as follows:
1) Control Authority ID NJPL

2) Version ID 3

3) Class ID I

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field 00000001

Example: NJPL3IF0PDSX0000000l

Figure 16.3: SFDU Example

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD_TYPE = STREAM or FIXED_LENGTH or UNDEFINED, the concatenated
SFDU labels shall be followed immediately by <CR><LF>. For data products that have
RECORD_TYPE =VARIABLE_LENGTH, the two SFDU labels shall not be followed by
<CR><LF>.

STREAM example CCSD3ZF0000l0000000lNJPL3IF0PDSX0000000l <CR><LF>

FIXED_LENGTH Example CCSD3ZF0000l0000000lNJPL3IF0PDSX0000000l<CR><LF>

VARIABLE_LENGTH Example CCSD3ZF0000l0000000lNJPL3IF0PDSX0000000l

UNDEFINED Example CCSD3ZF0000l0000000lNJPL3IF0PDSX0000000l<CR><LF>

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Label is attached, the data object begins on the
next record. If the PDS label is detached, the END statement is the last line of the file.

Chapter 16. SFDU Usage 16-5

16.2 The ZKI SFDU Organization

Any PDS data products that are packaged as SFDUs and are required to pass through the
AMMOS Project Database as part of an active mission must use the following SFDU
organization. All data products of this type are assumed to have attached PDS labels.

Each instance of a data product (file) in a data set shall include four (and only four) SFDU labels.
These are the Z Class SFDU label, the K Class SFDU label, the End-Marker label for the K
Class SFDU, and the I Class SFDU label. The Z and K Class SFDU labels are concatenated (i.e.
Z, then K) and left justified in the first line or record of the PDS label for each data product. The
End-Marker for the K Class SFDU label and the I Class SFDU label are right justified on the last
record of the PDS label (following the END statement). See Figure 16.4.

Figure 16.4: PDS Label Example for AMMOS compatible products

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Class indicates that the
value field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation
consists of a K Class (PDS label) and an I Class (data object) SFDU. This label also indicates
that the delimitation type is End-of-File and that this SFDU (data product) is terminated by a
single End-of-File. It shall be formed as follows:
1) Control Authority CCSD

2) Version ID 3

3) Class ID Z

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID 0001

7) Length Field 00000001

Example: CCSD3ZF0000l0000000l

The second SFDU label shall be an K Class Version 3 SFDU label. Class K indicates that the
value field (everything after the second 20 bytes) is catalog and directory information, i.e., the
PDS label (sometimes referred to as the K Header). The Data Description Unit ID of PDSX

16-6 Chapter 16. SFDU Usage

indicates that the PDS label uses the Object Description Language (ODL) syntax and the
Planetary Science Data Dictionary semantics to present data descriptive information. The SFDU
label also indicates that the SFDU is delimited by a Start-Marker/End-Marker pair. It shall be
formed as follows:
1) Control Authority ID NJPL

2) Version ID 3

3) Class ID K

4) Delimiter Type S

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field ##mark##

The marker pattern (##mark## in the example) can be set to any String which is unlikely to be
repeated elsewhere in the data product.

EXAMPLE: NJPL3KS0PDSX##mark##

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. For data products that have
RECORD_TYPE equal to VARIABLE_LENGTH the two concatenated SFDU labels shall not
be followed by <CR><LF>.

EXAMPLE: CCSD3ZF0000l0000000lNJPL3KS0PDSX##mark##

The remainder of the PDS label begins on the next line. The last line of the PDS label contains
the END statement. Then, in the same line or record, right justified, is the End-Marker for the K
Class SFDU and the I Class SFDU label. The End-Marker pattern shall appear as:

EXAMPLE: CCSD$$MARKER##mark##

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, ##mark##). Next shall be an I Class Version 3 SFDU label. Class I indicates that the
value field (everything after the SFDU label) is application data, the data object. The Data
Description Unit ID varies by data product type, is supplied by the JPL Control Authority, and is
usually documented in the science data product Software Interface Specifications (SIS). The
SFDU label also indicates that the SFDU will be terminated by a single End-of-File. It shall be
formed as follows:

Chapter 16. SFDU Usage 16-7

1) Control Authority ID NJPL

2) Version ID 3

3) Class ID I

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID XXXX

7) Length Field 00000001

EXAMPLE: NJPL3IF001060000000l

where XXXX has been replaced by 0106.

The two SFDU labels shall be concatenated, right justified, and appear in the last line or record
of the PDS label following the END statement. (If it happens that there is not 40 bytes left in the
last record of the PDS label, add an additional record and right justify the two SFDU labels.)
Note that there are no characters between the two SFDU labels, and that the marker pattern and I
Class SFDU Labels are transparent to the PDS label processing software (the PDS Toolbox).

Example: END CCSD$$MARKER##mark##NJPL3IF001060000000l

The data object begins on the next physical record.

• Example for STREAM record type

End Statement blank(s) End marker I Class SFDU End of record

END CCSD$$MARKER##mark##NJPL3IF0010600000001<CR><LF>

• Example for FIXED_LENGTH record type:

End Statement Terminator Record Boundary

END <CR><LF> bbbbb CCSD$$MARKER##mark##NJPL3IF0010600000001

• Example for UNDEFINED record type:

 Statement terminator

End Statement
END<CR><LF> CCSD$$MARKER##mark##NJPL3IF0010600000001

• Example for VARIABLE_LENGTH RECORD_TYPE:

16-8 Chapter 16. SFDU Usage

Record Length END end of statement

END CCSD$$MARKER##mark##NJPL3IF0010600000001

16.3 Exceptions to this Standard

Software files and document files should not be packaged as SFDUs. Previous versions of the
PDS standards expressed the ZI SFDU labels as an ODL statement. The ZI SFDU labels were
followed by “= SFDU_LABEL”.

EXAMPLE: CCSD3ZF0000100000001NJPL3IF0PDSX00000001 = SFDU_LABEL

Chapter 17. Usage of N/A, UNK, and NULL 17-1

Chapter 17

Usage of N/A, UNK and NULL

17.1 Interpretation of N/A, UNK, and NULL

During the completion of data product labels or catalog templates, it often occurs that a value is
not available for a required data element. The symbolic literals "N/A", "UNK", and "NULL" are
used in such cases to represent the fact that no value is available and also to suggest the reason
why the value is not available. This chapter provides both descriptive and technical definitions
for these symbolic literals.

The symbolic literals "N/A", "UNK", and "NULL" are allowed for use in all domains of all data
elements. In the descriptions, the actual use of a data element is referred to as an "instance" of
the data element.

17.1.1 N/A

When it appears as a value, "N/A" (shorthand for "Not Applicable") indicates that the values
within the domain of this data element are not applicable in this instance.

INSTRUMENT_ID = "N/A"

For example, in the Data Set catalog object, the instrument identification associated
with NAIF SPK kernels is "N/A" since these data sets have no associated
 instruments.

17.1.2 UNK

When it appears as a value, "UNK" (shorthand for "Unknown") indicates that the value for this
data element in this instance is permanently not known. A value is applicable but none is
forthcoming.

FILTER_NAME = "UNK"

In this example for a value with a character data type, the filter used for a Viking Image is not
known and no archive exists that supplies this information.

TWIST_ANGLE = "UNK"

"UNK" can also be used for values that have numeric data types, as shown in this example. Here
it indicates that the twist angle that applies to an image is not known and no archive exists that
supplies this information.

17-2 Chapter 17. Usage of N/A, UNK, and NULL

17.1.3 NULL

When it appears as a value, "NULL" indicates that the value for this data element in this instance
is temporarily unknown. A value is applicable and is forthcoming.

DATA_SET_RELEASE_DATE = "NULL"

This example shows that a data set could be loaded into the catalog before being officially
released. During the interim, the release date is not known.

17.2 Implementation recommendations for N/A, UNK, and NULL

Within information processing systems such as the PDS catalogs, the above definitions imply
that three distinct values will be stored for the "figurative constants" N/A, UNK, and NULL. The
PDS recommendations are as follows.

1) For character fields: The strings "N/A", "UNK", and "NULL" (see 3) can be stored as values
in data elements with character data types. This includes DATE/TIME data types where UTC or
other character formats are specified.

2) For numeric fields: See Table 17.1 for the values stored for data elements with numeric data
types.

3) Exception: Files such as volume INDEX files that are included in archive volumes in ASCII
format may use the figurative constants "N/A", "UNK", and "NULL" for both numeric and
character data types. Alternatively, numeric constants representing N/A, UNK, and NULL may
be defined for each column in an INDEX table, using the keywords
NOT_APPLICABLE_CONSTANT, UNKNOWN_CONSTANT, and NULL_CONSTANT in
the appropriate COLUMN objects.

Chapter 17. Usage of N/A, UNK, and NULL 17-3

Table 17.1: Numeric values for N/A, UNK, NULL

Signed
Integer
(4 byte)

Signed
Integer
(2 byte)

Unsigned
Integer
(4 byte)

Unsigned
Integer
(2 byte)

Tiny Integer
(1 byte -

unsigned)

Real Binary Time

 N/A -2147483648 -32768 4294967293 65533 locally defined -1.E32 Jan. 1, 1753**

 UNK 2147483647 32767 4294967294 65534 locally defined +1.E32 Dec. 31, 9999**

 NULL Null* Null* null* null* null* null* null*

* The availablility of NULL as a universal value across data types in some data management systems
simplifies the implementation of the figurative constant "NULL". However, if a system "null" is not
available, then either a) an arbitrary value can be chosen, or b) the meanings of UNK and NULL can be
combined and the token or numeric representation of UNK used.

** Sybase limits.

Chapter 18. Units of Measurement 18-1

Chapter 18

Units of Measurement

The uniform usage of units is essential in a broadly-based catalog system, for obvious reasons.
One cannot search for all the instruments covering 400 to 700 nm wavelength if some of the
entries are in Angstroms and some in microns. The PDS standard shall be Systeme Internationale
d'Unites (SI) where applicable. For example, micrometers should be used rather than microns.

The units for the data elements used in PDS data product labels and templates have been
determined by the discipline scientists on a data element by data element basis. The Planetary
Science Data Dictionary defines the desired units for each database element used in the system.
In addition, there is a table in the PSDD that gives unit definitions.

In cases where more than one type of unit is possible for a given data element, an additional data
element shall be used to identify the applicable unit. For example, the value of the element
SAMPLING_PARAMETER_RESOLUTION may be given in different units, depending on the
situation. Therefore, an additional element, SAMPLING_PARAMETER_UNIT, accompanies it,
in order to specify the applicable unit of measure. The PDS allows exceptions to SI units when
needed for consistency with previous community usage (e.g. an angle measurement in degrees
instead of radians).

Both the name of the unit and the symbol are allowed as well as singular or plural form. In
addition, the double asterisk (**) is used, rather than the caret (^) to indicate exponentiation, in
order to comply with the preferences of the European science community.

SI Units

The following summary of SI unit information is extracted from The International System of
Units.

Base units — As the system is currently used, there are seven fundamental SI units, termed "base
units”:
QUANTITY NAME OF UNIT SYMBOL

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

18-2 Chapter 18. Units of Measurement

amount of substance mole mol

luminous intensity candela cd

SI units are all written in lowercase style; symbols are also lowercase except for those derived
from proper names. No periods are used with any of the symbols in the international system.

Derived units — In addition to the base units of the system, a host of derived units, which stem
from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters,
and a millisecond is .001 (that is, 1/1,000) second. The prefixes in current use are as follows:

SI PREFIXES
Factor Prefix Symbol Factor Prefix Symbol

10**18 exa E 10**-1 deci d

10**15 peta P 10**-2 centi c

10**12 tera T 10**-3 milli m

10**9 giga G 10**-6 micro

10**6 mega M 10**-9 nano n

10**3 kilo k 10**-12 pico p

10**2 hecto h 10**-15 femto f

10**1 deka da 10**-18 atto a

Although, for historical reasons, the kilogram rather than the gram was chosen as the base unit,
prefixes are applied to the term gram instead of the official base unit: megagram (Mg), milligram
(mg), nanogram (ng), etc.

Another class of derived units consists of powers of base units and of base units in algebraic
relationships. Some of the more familiar of these are the following:

QUANTITY NAME OF UNIT SYMBOL

area square meter m**2

volume cubic meter m**3

density kilogram per cubic meter kg/m**3

velocity meter per second m/s

angular velocity radian per second rad/s

acceleration meter per second squared m/s**2

angular acceleration radian per second squared rad/s**2

kinematic viscosity square meter per second m**2/s

dynamic viscosity newton-second per square meter N*s/m**2

luminance candela per square meter cd/m**2

wave number 1 per meter m**-1

activity (of a radioactive source) 1 per second s**-1

Chapter 18. Units of Measurement 18-3

Many derived SI units have names of their own:

QUANTITY NAME OF UNIT SYMBOL EQUIVALENT

frequency hertz s**-1

angular acceleration hertz Hz s**-1

force newton N kg*m/s**2

pressure (mechanical stress) pascal Pa N/m**2

work,energy,quantity of heat joule J N*m

power watt W J/s

quantity of electricity potential difference coulomb C A*s

 electromotive force volt V W/A

electrical resistance ohm - V/A

capacitance farad F A*s/V

magnetic flux weber Wb V*s

inductance henry H V*s/A

magnetic flux density tesla T Wb/m**2

magnetomotive force ampere A

luminous flux lumen lm cd*sr

illuminance lux lx lm/m**2

 Supplementary units are as follows:
QUANTITY NAME OF UNIT SYMBOL

plane angle radian rad
solid angle steradian sr

Use of figures with SI units — In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity of any SI unit. Thus the quantity
12,000 meters is expressed 12 km, not 12,000 m. So too, 0.003 cubic centimeters is preferably
written 3 mm3, not 0.003 cm3.

Chapter 19. Volume Organization and Naming 19-1

Chapter 19

Volume Organization and Naming

The Volume Organization and Naming Standard defines the standard way of organizing data sets
onto physical media and the conventions for forming volume names and identifiers. A volume is
one unit of physical media such as a CD-ROM, a CD-WO, an 8mm magnetic tape, or a 9-track
magnetic tape. Data sets may reside on one or more volumes and multiple data sets may also be
stored on a single volume. Volumes are grouped into Volume Sets.

Each volume has a directory structure which contains subdirectories and files. Both random
access (CD-ROM) and sequential access (magnetic tape) media are supported. A PDS volume on
sequential access media has a “virtual” directory structure defined in the volume object included
on the volume in the file VOLDESC.CAT. The virtual directory structure may be used to
recreate the volume directory structure when the files are moved to random access media.

PDS recommends that archive volumes be based on a single version of the PDS Standards.
Software tools that work with one version of the standard may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes. The distinguishing
characteristics between the volume types are the number of data sets on each volume and the
number of volumes required to capture all the data. The directory organization of the volumes
and the required files varies slightly depending on the volume type. Figures 19.1 through 19.5
depict the various volume directory structure options. The four volume types are described
below.

(1) One data set on one volume - this is the basic volume organization consisting of the
required ROOT directory, INDEX, and data subdirectories and the seven optional
subdirectories: DOCUMENT, CATALOG, LABEL, GAZETTER (not shown in the
figures), SOFTWARE, CALIB, and GEOMETRY. See Figure 19.1.
Note that CALIB and GEOMETRY are only recommended directory names, other
appropriate names may be substituted.

(2) One data set on many volumes - this type includes both an index for the volume and a
cumulative index for the volume set (up to the given volume number, not the entire set) in
the INDEX subdirectory. See Figure 19.2.

(3a) Many data sets on one volume (one logical volume) - this type of volume requires
additional file naming conventions to distinguish similar files for different data sets. In
addition, the DATA subdirectories are organized by data set (or equivalent, e.g. instrument)

19-2 Chapter 19. Volume Organization and Naming

at the first level below the ROOT directory. See Figure 19.3.

(3b) Many data sets on one volume (many logical volumes) - this volume organization is
designed to accommodate many small data sets that have distinct documentation, indexing
and other ancillary information that are more logically packaged together below the root
directory of the volume. See Figure 19.4. Directories common to all logical volumes (e.g.
SOFTWARE) may also be supplied, provided there are no pointer references to any files
within a common directory.

(4) Many data sets on many volumes - this type requires additional file naming conventions,
cumulative indices, and a first level subdirectory organization by data set. See Figure 19.5.

NOTE: It is permissible to have one or more data volumes with an ancillary volume containing
the DOCUMENT, CATALOG, GAZETTER, SOFTWARE, CALIB, and GEOMETRY
directories. If this is done, PDS requires that all include files be present on each data disk. PDS
prefers that ancillary files be archived on the same volumes as the data wherever possible. This
makes data easier to access for the science users. The contents and organization of the directories
of all the volume types are described in this chapter.

Figure 19.1 Volume Set Organization Standard - One Data Set, One Volume

Figure 19.2 Volume Set Organization Standard - One Data Set, Many Volumes

Figure 19.3 Volume Set Organization Standard - Many Data Sets, One Volume

Figure 19.4 Volume Set Organization Standard - Many Data Sets, One Physical Volume, Many Logical Volumes

Figure 19.5 Volume Set Organization Standard - Many Data Sets, Many Volumes

19-8 Chapter 19. Volume Organization and Naming

19.2 Volume Organization Guidelines

PDS recommends that directory structures be simple, path names short, and directory and file
names be constructed in a logical manner. It is recommended that the number of files per
subdirectory should ideally be a screenful, allowing users to browse through file names using the
directory command. Some externally developed software cannot handle subdirectories with more
than 255 files, so it is recommended that this number not be exceeded. PDS also recommends
that there be no empty subdirectories (as a convenience to users).

19.3 Description of Directory Contents and Organization

ROOT Directory -- Required
Top level directory of a physical or logical volume. The ROOT directory (of a physical or logical
volume) contains the following required and optional files and subdirectories.

AAREADME.TXT -- Required
Contains an overview of the contents of the volume (physical or logical volume) and its
organization, general instructions for using the volume and its contents, and provides
contact information. Its name has been chosen so that it will be listed first in an
alphabetical directory listing. See Appendix D for an outline and example of an
AAREADME.TXT file.

ERRATA.TXT -- Optional
Contains textual information describing errors and/or anomalies found in the current
volume as well as errors and/or anomalies found in previous volumes of a volume set. If
known errors exist on a volume they shall be documented in this file.

VOLDESC.CAT -- Required
Contains the VOLUME Object which gives a high-level description of the contents of the
volume.

VOLDESC.SFD -- Optional
Contains the SFDU Reference Object structure which aggregates the separate file contents
of the volume into an SFDU. The Reference Object is expressed in PVL. This file should
only be considered for use if the data products are packaged as SFDUs. Note: the “.SFD”
file extension is a reserved file extension in the CCSDS SFDU standard indicating the file
contains a valid SFDU. Note that this file is identified here for backward compatability
with previous versions of the PDS standards and is not to be used in current archive
products

DOCUMENT Subdirectory -- Optional
Contains all the textual material that describes the mission, spacecraft, instrument, and data set.
This can include references to science papers, or the actual papers.

DOCINFO.TXT -- Required

Chapter 19. Volume Organization and Naming 19-9

Contains a textual description of the contents of the DOCUMENT subdirectory.

VOLINFO.TXT -- Optional
Contains a textual description of the contents of the volume. It is an optional file, however,
either one or both of the VOLINFO.TXT or the data set catalog objects in the CATALOG
subdirectory shall be included on the volume (see the CATALOG subdirectory).

CATALOG Subdirectory -- Optional
Contains all the completed catalog objects for the mission(s), instrument host(s), instrument(s),
and data set(s) for the archive volume. This is an optional directory (i.e., a complete set of
catalog objects do not have to be included on the archive volume); if and only if, a
VOLINFO.TXT file is included in the DOCUMENT directory of the volume. If a complete set
of catalog objects are provided then the VOLINFO.TXT is not required, and vice versa. The
VOLINFO.TXT file is the textual equivalent of the catalog objects (i.e., all of the information
required to be present in the catalog objects shall be present in the VOLINFO.TXT file).

The primary difference between catalog objects and the VOLINFO.TXT file is that the catalog
objects use an "OBJECT / END_OBJECT" and "KEYWORD = VALUE" format and each
catalog object is an independent file. The VOLINFO.TXT is a single file which uses a text
format.

Note that for logical volumes, these must be below the logical volume root, if present.

CATINFO.TXT -- Required
Contains a textual description of the contents of the CATALOG subdirectory.

CATALOG.CAT -- Required
Contains the entire set of high-level descriptive information about a data set (this includes
separate descriptions for each mission, each instrument host, each instrument, and each
data set; as well as, reference and personnel information), expressed in PDS objects which
makes the file suitable for loading into a catalog.

PDS Preferred Method for Supplying Catalog Objects
Individual catalog objects may also be packaged into separate files. This is the preferred
method for supplying catalog objects as each catalog object must be ingested into the PDS
catalog independent of the other objects. If a CATALOG.CAT file is supplied, the CN data
engineer must disassemble the single file into multiple files / catalog templates. Each file
corresponds to a catalog template and each catalog template corresponds to a single catalog
object. The data engineer then must validate each file, and format each description field in
accordance with the prescribed headings and sub-headings for each catalog template.

For example, in Figure 19.5, the files axxxxxDS.CAT and bxxxxxDS.CAT represent two
separate files each containing data set catalog objects (descriptive information about the
data set) for data sets a and b respectively. See the File Specification and Naming chapter
in this document for the file naming rules. See also Appendix A for the required contents of
the catalog object.

19-10 Chapter 19. Volume Organization and Naming

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

LABEL Subdirectory -- Optional
Contains additional PDS labels and/or include files (meta data or descriptive information) which
were not packaged with the data products or in the data subdirectories.
Note that if a logical volume organization is used, the LABEL subdirectory, if present, must
reside below the logical volume ROOT, since pointer references to files within a common
directory are not allowed.

LABINFO.TXT -- Required
Contains a textual description of the contents of the LABEL subdirectory.

Include Files -- Required
Files pointed to in a PDS label that contain additional meta data or descriptive information.
Only files of type LBL, TXT, or FMT shall be included in the LABEL subdirectory. In the
figures, the files axxINCLUDE FILE1, bxxINCLUDE FILE1 and INCLUDE FILE1
represent sample files of the above types. The axx and bxx prefixes indicate that the include
files for different data sets (a and b) may be combined in the same LABEL subdirectory.

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

GAZETTER Subdirectory -- Optional
Contains detailed information about all the named features on a target body associated with the
data sets on the volumes. The features are those the International Astronomical Union (IAU) has
named and approved.

GAZINFO.TXT -- Required
Contains a textual description of the contents of the GAZETTER subdirectory.

GAZETTER.TXT -- Required
Contains a textual description of the structure and contents of the gazetteer table.

GAZETTER.LBL -- Required
Contains the PDS label identifying and giving a formal description of the structure of the
gazetteer table.

GAZETTER.TAB -- Required
Contains the gazetteer table.

Chapter 19. Volume Organization and Naming 19-11

SOFTWARE Subdirectory -- Optional
Contains the software libraries, utilities, or application programs to access/process the data
objects. It may also include algorithms. Currently only public domain software can be included
on PDS archive volumes.

The following SOFTWARE subdirectory structure is the recommended platform-based model.
An alternative model for the SOFTWARE subdirectory structure is application-based (e.g.
directory names are based on the application such as DISPLAY). See Appendix D
SOFTINFO.TXT example for the subdirectory structure used for Clementine. See Appendix E
for the subdirectory structure of the NAIF Toolkit for a single platform.

SOFTINFO.TXT -- Required
Contains a textual description of the contents of the SOFTWARE subdirectory.
For an outline and example, see Appendix D.

SRC Subdirectory -- Optional
There can be a global SRC directory under the SOFTWARE directory if there is source
code applicable to all platforms. For example, application programming languages such as
IDL are relatively platform independent and would be placed in a global SRC directory.
Note in example below, there is both a global source directory as well as source directories
at the lower levels.

DOC Subdirectory -- Optional
A global DOC directory under the SOFTWARE directory would contain documentation for
the source code in the global SRC directory.

LIB Subdirectory -- Optional
A global LIB directory under the SOFTWARE directory would contain libraries applicable
to all platforms.

Hardware Platform and Operating System/Environment Subdirectories -- Optional
(not present if only global source code provided)

1. The hardware platform and the operating system/environment must be explicitly stated.
If there is more than one operating system/environment (os/env) supported then they must
be subdirectories under the hardware directories. If there is only one, then that subdirectory
can be promoted to the hardware directory level (via naming conventions). In the example
below, since only one os/env is supported on hardware 2, the name of the hardware
subdirectory also contains the os/env name.

19-12 Chapter 19. Volume Organization and Naming

SOFTWARE

SOFTINFO.TXT

 <HW1> <HW2> <SRC> <SRC>* <DOC>*

 <os1> <os2> <os3> BIN SRC DOC LIB OBJ

 … …

BIN SRC DOC LIB OBJ

2. The next level of directories are BIN, SRC, DOC, LIB and OBJ. If any are not
applicable, they should be left off (i.e. no empty directories).

*info.txt files under SOFTWARE subdirectories are optional (e.g. PCINFO.TXT,
MACINFO.TXT, VAXINFO.TXT, SUNINFO.TXT, etc.).

3. Examples of subdirectory names for the two cases where there are single or multiple
operating system/environments are listed below. This list is not meant to be a complete
list, it will be updated on an as-needed basis.

Multiple Single

PC
 DOS PCDOS
 WIN PCWIN
 WINNT PCWINNT
 OS2 PCOS2

MAC
 SYS7 MACSYS7
 AUX MACAUX

SUN
 SUNOS SUNOS
 SOLAR SUNSOLAR

Chapter 19. Volume Organization and Naming 19-13

VAX
 VMS VAXVMS
 ULTRX VAXULTRX

SGI
 IRX4 SGIIRX4
 IRX5 SGIIRX5

CALIBration Subdirectory -- Optional
Contains the calibration files used in the processing of the raw data or needed to use the data
products on the volume.
Note that CALIB is only a recommended directory name, another appropriate name may be used.

CALINFO.TXT -- Required
Contains a textual description of the contents of the CALIB subdirectory.

Calibration Files -- Required
In the figures, the files axxCALIB.TAB and bxxCALIB.TAB represent sample files. The
axx and bxx prefixes indicate that the calibration files for different data sets (a and b) may
be combined in the same CALIB subdirectory.

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

GEOMETRY Subdirectory -- Optional
Contains the relevant files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.
Note that GEOMETRY is only a recommended directory name, another appropriate name may
be used.

GEOMINFO.TXT -- Required
Contains a textual description of the contents of the GEOMETRY subdirectory.

INDEX Subdirectory -- Required (exception noted below)
Contains the indices for the data products in the data set(s) on the volume.

Exception note: If the logical volume organization is used, there will generally be no INDEX
subdirectory at the ROOT of the physical volume. Instead there will be individual INDEX
subdirectories at the ROOT of each logical volume.

INDXINFO.TXT -- Required
Contains a textual description of the contents of the INDEX subdirectory. This description
should include at least:

19-14 Chapter 19. Volume Organization and Naming

 1) A description of the structure and contents of each index table in this subdirectory.

 2) Usage notes

For an example of the INDXINFO.TXT file, see Appendix D, Section D.2.

INDEX.LBL -- Required (exception noted below)
For all volumes, this file contains the PDS label for the volume index (INDEX.TAB). The
INDEX_TABLE specific object should be used to identify and describe the structure
(columns) of the index table. See Appendix A.
Although INDEX.LBL is the preferred name for this file, the name axxINDEX.LBL may
also be used (with axx replaced by an appropriate mnemonic).

Exception note: PDS recommends the use of detached labels for index tables. If an attached
label is used, this file is superfluous (i.e., not needed).

INDEX.TAB -- Required
For all volumes, this file contains the volume index in tabular format. Normally only data
files are included in an index table. In some cases, however, ancillary files may be
included.
Although INDEX.TAB is the preferred name for this file, the name axxINDEX.TAB may
also be used (with axx replaced by an appropriate mnemonic).

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

CUMINDEX.LBL -- Recommended for multi-volume sets
For multi-volume sets, this file contains the PDS label for the cumulative volume set index
(CUMINDEX.TAB). The INDEX_TABLE specific object should be used to identify and
describe the structure (columns) of the cumulative volume set index table. See Appendix A.
Although CUMINDEX.LBL is the preferred name for this file, the name axxCMIDX.LBL
may also be used (with axx replaced by an appropriate mnemonic).
PDS recommends the use of detached labels for index tables. If an attached label is used,
this file is not needed.

CUMINDEX.TAB --Recommended for multi-volume sets
For multi-volume sets, this file contains the cumulative volume set index in a tabular
format. Normally only data files are included in a cumulative index table. In some cases,
however, ancillary files may be included.
Although CUMINDEX.TAB is the preferred name for this file, the name axxCMIDX.TAB
may also be used (with axx replaced by an appropriate mnemonic).

EXTRAS Subdirectory -- Optional
The EXTRAS directory is the designated area for housing additional elements provided by data

Chapter 19. Volume Organization and Naming 19-15

producers beyond the scope of PDS compliance requirements of a data set. Examples include
HTML-based disk navigators, educational and public interest aids, and other useful but
nonessential items. The PDS has no restrictions on the contents and organization of this
subdirectory other than conformance to ISO-9660/UDF standards.

EXTRINFO.TXT -- Required
Contains a textual description of the contents and organization of the EXTRAS
subdirectory. This description should include at least:

 1) A description of the structure and contents of each file in this subdirectory.

 2) Usage notes

Data Subdirectories -- Required (exception noted below)
Contain the data product files. These subdirectories are organized and named according to the
Directory Types and Naming chapter in this document. Subdirectories may be nested up to eight
levels deep on a physical volume. Data products may be packaged with their PDS labels
attached, where the label and the data object(s) are contained in a LABELED DATA FILE, or
with PDS labels detached, where the PDS label is contained in a LABEL FILE and the data
object(s) in a DATA FILE.

Data File -- Contains a data object which is a grouping of data resulting from a scientific
observation such as an image or table, representing the measured instrument parameters.
The associated PDS label is contained in a LABEL FILE.

Label File -- Contains a detached PDS label expressed in the Object Definition Language
that identifies, describes, and defines the structure of the data objects. The associated data
objects are contained in a DATA FILE. The LABEL FILE shall have the same basename as
the associated DATA FILE and the extension of “.LBL”.

Labeled Data File -- Contains data object(s) and associated PDS label.

Exception note: Data subdirectories are not present at the ROOT level of a physical volume
when logical volumes are used. Instead, they are nested below the ROOT of the logical
volume.

19.4 Volume Naming

The Volume name provides the name of a data volume. Volume names shall be at most 60
characters in length and are in upper case. They should describe the contents of the volume in
terms that a human user can understand. Most computer systems and software use the volume
ID, not the volume set name or volume name, when processing media volumes. The volume set
name or volume name are therefore more important to a human user than to a machine.

In most cases the volume name is more specific than the volume set name. For example, the

19-16 Chapter 19. Volume Organization and Naming

volume name for the first volume in the VOYAGER IMAGES OF URANUS volume set is:

“VOLUME 1: COMPRESSED IMAGES 24476.54 - 26439.58"

19.4.1 Volume ID

Many types of media and the machines that read media volumes place a limit on the length of the
volume ID. Therefore, although the complete volume set ID should be placed on the outside
label of the volume, a shorter version is actually used when the volume is recorded. PDS has
adopted a limit of 9 characters for these terse volume identifiers. This terse identifier shall
consist of the last two components of the volume set ID, with the "X" wildcard values replaced
by the sequence number associated with the particular volume (see the Volume Set ID Standard
below). This ID must always be unique for PDS data volumes. Note that the ID must be in upper
case.

EXAMPLES:

VG_0002 (for volume 2 of the Voyager set)
MG_0001 (for the first volume of the Magellan set)
VGRS_0001 (for a potential Voyager Radio Science collection)

If a volume is redone because of errors in the initial production the volume ID should remain the
same, and the VOLUME_VERSION_ID should be incremented. This parameter is contained in
the VOLDESC.CAT file on the volume, and the version ID should also be placed on the external
volume label as “Version n” where n indicates the revision number. This indicates that the
original volume should be replaced with the new version. If a volume is redone because the data
have been enhanced it should be given a new volume ID, not a new version number.

19.5 Volume Set Naming

The Volume Set Name provides the full, formal name of a group of data volumes containing a
data set or a collection of related data sets. Volume set names shall be at most 60 characters in
length and must be in upper case. Volume sets are normally considered as a single orderable
entity.
For example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: THE MOSAIC IMAGE DATA RECORD

MAGELLAN: THE ALTIMETRY AND RADIOMETRY DATA RECORD

MAGELLAN: THE GLOBAL ALTIMETRY AND RADIOMETRY DATA RECORD

PRE-MAGELLAN RADAR AND GRAVITY DATA SET COLLECTION

In certain cases, the volume set name can be the same as the volume name, such as when the
volume set consists of only one volume.
Note that in VAX computer usage a volume set has very special attributes, and that all volumes
of a volume set must be on line for proper access. There are no plans within PDS to produce
volume sets following the VAX definition. Instead the VOLUME_SET_NAME and

Chapter 19. Volume Organization and Naming 19-17

VOLUME_SET_ID are used to group related data and to provide additional specificity in a
volume name in case volumes produced by different organizations have the same volume IDs.

19.5.1 Volume Set ID

The volume set ID identifies a data volume or a set of volumes. Volume sets are normally
considered as a single orderable entity. Volume set IDs shall be at most 60 characters in length,
must be in upper case, and are formed of the following fields, separated by underscores:

1. The country of origin (abbreviated).
2. The government branch.
3. The discipline within the branch that is producing the volumes.
4. A campaign, mission or spacecraft identifier (2 characters) followed by an optional

2 character instrument or product identifier.
5. A 4 digit sequence identifier. The first digit or digits may be used to represent the

volume set and the trailing “X”s are wildcards that represent the range of volumes
in the set. Up to 4 "X"s are allowed.

EXAMPLE

USA_NASA_PDS_GO_10XX could be the Volume set ID for the Galileo EDR volume set,since there are less than 100 volumes
(since the XX placeholder accommodates the range 01 - 99 only). Note that the volume IDs for volumes in the set would then be
GO_1001, GO_1002, etc.

NOTE: Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the
“X”s. currently used as wildcards. Instead, the last digits represented the volume. For
example, on Magellan, a volume_set_ID "USA_NASA_JPL_MG_0001" was used
ONLY for the volume with volume_ID of "MG_0001". Subsequent volumes in the same
set had volume_set_IDs that differed in the final field.

 If a set of volumes was to be distributed as one logical unit, the volume set ID included
the range of volume IDs.

EXAMPLE

USA_NASA_PDS_VG_0001_TO_VG_0003 for the three volumes that comprise the Voyager Uranus volume set.

19.6 Logical Volume Naming

Logical volumes will retain the volume and volume set naming used at the physical volume
level. For further information, see Appendix A, Volume Object.

19.7 Exceptions to This Standard

In some rare cases, machine or software restrictions may exist on volume IDs. Also, volumes
made in the past may have IDs which do not meet this standard and there may be compelling
reasons for keeping the same volume ID when making a new copy of the data. All new data sets,
however, should use this standard.

Chapter 20. Zip Compression 20-1

Chapter 20

Zip Compression

The PDS standards support two different approaches to data compression.

In one case, a data object contains numbers that have been encoded using one of several
supported methods (e.g., "Huffman first difference"). In this approach, the label describes the
compressed data and the ENCODING_TYPE keyword indicates how the data object is to be
decompressed by the user. PDS standards only support this approach to compression for
IMAGE objects.

In the alternative approach, a standard compression method called "Zip" is used. In this case, an
entire data file is compressed rather than a particular data object. The user is expected to apply
the "Unzip" utility to decompress the file, and the label then describes the decompressed data
directly.

This chapter describes PDS standards for archiving data using Zip compression. For more
information on compression of individual IMAGE objects, see Sect. A.19.

In general, the archiving of data in a compressed format should be used sparingly, because
although it reduces the number of physical volumes, it makes the data more difficult for users to
interpret. PDS recommends that data compression should only be used in limited situations, such
as to compress very large and infrequently used data or to archive processed data where the
source product is readily available in a non-compressed PDS archive.

20.1 Info-Zip Software

PDS has adopted the Zip and UnZip software packages, as developed by the Info-Zip
Consortium. A thorough description of the software packages and the Info-Zip work group can
be found at:

http://www.cdrom.com/pub/infozip

This same information is available on line from PDS at:

http://pds.jpl.nasa.gov

The primary reasons for adopting the Info-Zip software packages include:

• Info-Zip, a diverse Internet-based workgroup of about 20 primary authors and over one

20-2 Chapter 20. Zip Compression

hundred beta-testers, provides free, portable, high-quality versions of the Zip and UnZip
utilities.

• Info-Zip has defined a lossless compressed data format that is independent of CPU type,
operating system, file system, and character set. The Info-Zip utilities can be implemented
readily in a manner not covered by patents, and hence can be practised and distributed
freely.

• The Zip and UnZip utilities are free, as is the source code. The Zip utility is useful for
packaging a set of files for distribution, for archiving files, and for saving disk space by
compressing files or directories. Zip puts one or more compressed files into a single ZIP
archive, along with information about the files (name, path, date, time of last modification,
protection, and check information to verify file integrity). An entire directory structure can
be packed into a ZIP archive with a single command. Zip has one compression method
(deflation) and can also store files without compression. Zip automatically chooses the
better of the two for each file.

• Compression ratios of 2:1 to 3:1 are common for text files.

• The UnZip utility is an extraction utility for archives compressed in .zip format (also
called "zipfiles"). UnZip will list, test, or extract files from a .zip archive. The default
behavior (with no options) is to extract into the current directory (and subdirectories below
it) all files contained within the specified zipfile.

20.2 Zip File Labels

When archiving data in Zip format, two files need to be considered: (1) the zipfile itself, and (2)
the data file that one obtains when one decompresses the zipfile. PDS strongly recommends that
the two files have the same name but different extensions: ".ZIP" for the zipfile and a more
descriptive extension (e.g. ".DAT" or ".IMG") for the unzipped file. The ".ZIP" file extension is
reserved exclusively for zip-compressed files within the PDS.

PDS does not recommend the practice of compressing multiple data files into a single zipfile.
This will minimize the potential confusion to a user not able to locate a desired file because it
was hidden inside a differently-named zipfile. It also reduces the risk associated with
compressing data and is akin to "not putting all the eggs into one basket". The only exception to
this rule is that multiple files in the same directory that have the same name but different
extensions can be archived in the same zipfile. For example, if file ABC.IMG contains an image
and file ABC.TAB contains a table of additional information relevant to that image, then both
files can be archived in the file ABC.ZIP. (As described below, PDS detached label files are also
included in zipfiles.)

Like all PDS data files, both the zipped and the unzipped data files require labels. These files
must be described by a single, detached PDS label file, via the combined-detached label
approach (see Sect. 5.2.2). Attached labels are not permitted for Zip-compressed data, because
the user must be able to examine the label before deciding whether or not to decompress the file.
In a combined-detached label, each individual file is described within a FILE object. Here is the

Chapter 20. Zip Compression 20-3

general framework:

PDS_VERSION_ID = PDS3
DATA_SET_ID = ...
PRODUCT_ID = ...
 (other parameters relevant to both Zipped and Unzipped files)

OBJECT = COMPRESSED_FILE
 (parameters describing the compressed file)
END_OBJECT = COMPRESSED_FILE

OBJECT = UNCOMPRESSED_FILE
 (parameters describing the first uncompressed file)
END_OBJECT = UNCOMPRESSED_FILE

OBJECT = UNCOMPRESSED_FILE
 (parameters describing the a second uncompressed file, if present)
END_OBJECT = UNCOMPRESSED_FILE
END

The first FILE object, the COMPRESSED_FILE, refers to the zipped file; additional FILE
objects, called UNCOMPRESSED_FILEs, refer to the decompressed data file(s) that the user
will obtain by unzipping the first.

The zipfile is described via a "minimal label" (Section 5.2.3). The following keywords are
required:

FILE_NAME = name of the zipfile
RECORD_TYPE = UNDEFINED
ENCODING_TYPE = ZIP
INTERCHANGE_FORMAT = BINARY
UNCOMPRESSED_FILE_NAME = a list of the names of all the files archived in the zipfile
REQUIRED_STORAGE_BYTES = approximate total number of bytes in the data files
DESCRIPTION = a brief description of the zipfile format

Typically, the DESCRIPTION is given as a pointer to a file "ZIPINFO.TXT" found in the
DOCUMENT directory on the same volume.

The subsequent UNCOMPRESSED_FILE object(s) contain complete descriptions of the data
files obtained by unzipping the zipfile.

20.3 Packaging Zip Archives on Volumes

By providing the combined-detached label as presented above, a PDS volume containing zipfiles
would conform to all established PDS standards, provided both the zipfile and its constituent
data files were archived. The unique feature of a Zip-compressed PDS archive volume is that
only the zipfiles appear; the UNCOMPRESSED_FILE objects described by the labels are not
present on the volume, but can be obtained by unzipping the zipfiles provided.

20-4 Chapter 20. Zip Compression

In addition to archiving the data files in a zipfile, PDS requires that the corresponding label file
also be included in the zipfile. It is recommended that any .FMT files referenced by
^STRUCTURE keywords in the label also be included. The reason is that this guarantees that,
when a user transfers a zipfile from a disk and unzips it, the required label information will also
be present in the same directory. Thus, the identical label is duplicated both inside and outside
the zipfile.

Note: These additional .LBL and .FMT files do not need to be described by
UNCOMPRESSED_FILE objects in the label, because PDS label and format files never
require labels. Furthermore, the sizes of these files do not need to be included in the
value of the REQUIRED_STORAGE_BYTES keyword. However, the names of these
files do need to be included in the list of UNCOMPRESSED_FILE_NAME values.

20.4 Label Example

The following is an example of a PDS label for a Zip-compressed data file.

PDS_VERSION_ID = PDS3
DATA_SET_ID = "HST-S-WFPC2-4-RPX-V1.0"
SOURCE_FILE_NAME = "U2ON0101T.SHF"
PRODUCT_TYPE = OBSERVATION_HEADER
PRODUCT_CREATION_TIME = 1998-01-31T12:00:00

OBJECT = COMPRESSED_FILE
 FILE_NAME = "0101_SHF.ZIP"
 RECORD_TYPE = UNDEFINED
 ENCODING_TYPE = ZIP
 INTERCHANGE_FORMAT = BINARY
 UNCOMPRESSED_FILE_NAME = { "0101_SHF.DAT", "0101_SHF.LBL"}
 REQUIRED_STORAGE_BYTES = 34560
 ^DESCRIPTION = "ZIPINFO.TXT"
END_OBJECT = COMPRESSED_FILE

OBJECT = UNCOMPRESSED_FILE
 FILE_NAME = "0101_SHF.DAT"
 RECORD_TYPE = FIXED_LENGTH
 RECORD_BYTES = 2880
 FILE_RECORDS = 12
 ^FITS_HEADER = ("0101_SHF.DAT", 1 <BYTES>)
 ^HEADER_TABLE = ("0101_SHF.DAT", 25921 <BYTES>)

 OBJECT = FITS_HEADER
 HEADER_TYPE = FITS
 INTERCHANGE_FORMAT = ASCII
 RECORDS = 7
 BYTES = 20160
 ^DESCRIPTION = "FITS.TXT"
 END_OBJECT = FITS_HEADER

 OBJECT = HEADER_TABLE
 NAME = HEADER_PACKET
 INTERCHANGE_FORMAT = BINARY
 ROWS = 965

Chapter 20. Zip Compression 20-5

 COLUMNS = 1

 ROW_BYTES = 2
 DESCRIPTION = "This is the HST standard header packet

 containing observation parameters. It is stored as a sequence of 965 two-byte integers. For
more detailed information, contact Space Telescope Science Institute."

OBJECT = COLUMN
 NAME = PACKET_VALUES
 DATA_TYPE = MSB_INTEGER
 START_BYTE = 1
 BYTES = 2
 END_OBJECT = COLUMN
 END_OBJECT = HEADER_TABLE
END_OBJECT = UNCOMPRESSED_FILE
END

20.5 ZIPINFO.TXT Example

While the ZIPINFO.TXT file is not required, it is strongly recommended that this file be
included as part of the process of documenting the contents of a zipfile. The following is an
example ZIPINFO.TXT file and the type of information that should be included in the
ZIPINFO.TXT file:

PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM

OBJECT = TEXT
 PUBLICATION_DATE = 1999-07-26
 NOTE = "This file provides an overview of the ZIP file format."

END_OBJECT = TEXT
END

Many of the files in this data set are compressed using Zip format. They are all indicated by the extension
".ZIP". ZIP is a utility that compresses files and also allows for multiple files to be stored in a single Zip
archive. You will need the UNZIP utility to extract the files.

The SOFTWARE directory on this volume contains a complete description of the Zip file format and also
the complete source code for the UNZIP utility. The file format and file decompression algorithms are
described in the file SOFTWARE/APPNOTE.TXT.

It is far simpler to obtain a pre-built binary of the UNZIP application for your platform. Binaries for most
platforms are available from the Info-ZIP web site, currently at:

 http://www.cdrom.com/pub/infozip/

The same information can also be found a the PDS Central Node's web site, currently at:

 http://pds.jpl.nasa.gov/

20-6 Chapter 20. Zip Compression

20.6 Additional Files

The PDS believes that Zip is a robust standard that will be in use for many years to come.
Nevertheless, one cannot be certain that users in the distant future will have ready access to
"Unzip" software for all future platforms. For this reason, any volume containing zipfiles is
required to contain a complete description of the zipfile format, plus sample "Unzip" source
code. This information must be found in a subdirectory of the SOFTWARE directory tree. This
can be obtained from the Info-Zip web site, and the PDS Central Node will soon begin to
maintain a sample SOFTWARE directory tree containing all the required information.

Appendix A. PDS Data Object Definitions A-1

Appendix A

PDS Data Object Definitions

This section provides an alphabetical reference of PDS data object definitions, including a
description, a list of required and optional keywords, a list of required and optional sub-objects (or
child objects), and one or more examples.

NOTE: Any keywords in the Planetary Science Data Dictionary may also be included in the
definition of a specific data object definition.

These definitions and examples are provided here for convenience. Additional examples of Data
Object Definitions can be obtained by contacting your Data Engineer. As the definitions herein
are subject to additions, modifications, and/or refinement, PDS has a web site where the current
state of the Data Object Definitions can be ascertained:

http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

The examples provided in this Appendix have been based on both existing or planned PDS archive
products, modified to reflect the most recent version of the PDS standards. They are not intended
to represent existing data products and data object definitions designed under previous PDS
standards.

The following PDS approved data object definitions are to be used for labeling primary and
secondary data objects. For a more detailed discussion on primary and secondary data objects, see
the Data Products chapter in this document.

There now exist four new Primitive Data Objects, ARRAY, BIT_ELEMENT (still under review),
COLLECTION and ELEMENT. Although these objects are available, they should only be used
after careful consideration of the current PDS Data Objects. Please see the PDS Objects chapter
in this document for guidelines on the use of primitive objects.

A-2 Appendix A. PDS Data Object Definitions

TABLE OF CONTENTS

A.1 Alias...A-3

A.2 Array (Primitive Data Object) ...A-4

A.3 Bit Column...A-7

A.4 Bit Element (Primitive Data Object)..A-10

A.5 Catalog...A-11

A.6 Collection (Primitive Data Object)..A-14

A.7 Column...A-15

A.8 Container..A-19

A.9 Data Producer...A-25

A.10 Data Supplier ...A-26

A.11 Directory ..A-27

A.12 Document...A-29

A.13 Element (Primitive Data Object) ...A-32

A.14 File ...A-33

A.15 Gazetteer_Table...A-37

A.16 Header.. A-45

A.17 Histogram...A-47

A.18 History..A-49

A.19 Image..A-52

A.20 Image Map Projection..A-57

A.21 Index_Table ...A-62

A.22 Palette...A-67

A.23 Qube...A-70

A.24 Series..A-78

A.25 Spectrum ..A-82

A.26 SPICE Kernel...A-85

A.27 Table ..A-87

A.28 Text ..A-107

A.29 Volume...A-109

Appendix A. PDS Data Object Definitions A-3

A.1 ALIAS

The ALIAS object provides a method for identifying alternate terms or names for approved data
elements or objects within a data system. The ALIAS object is an optional sub-object of the
COLUMN object.

Required Keywords

1. ALIAS_NAME
2. USAGE_NOTE

Optional Keywords

None

Required Objects

None

Optional Objects

None

Example

The following is an example of the usage of the ALIAS object as a subobject of COLUMN in a Magellan ARCDR label:

OBJECT = COLUMN
 NAME = ALT_FOOTPRINT_LONGITUDE
 START_BYTE = 1
 DATA_TYPE = REAL
 BYTES = 10

 OBJECT = ALIAS
 ALIAS_NAME = AR_LON
 USAGE_NOTE = "MAGELLAN MIT ARCDR SIS"
 END_OBJECT = ALIAS
END_OBJECT = COLUMN

A-4 Appendix A. PDS Data Object Definitions

A.2 ARRAY (Primitive Data Object)

The ARRAY object is provided to describe dimensioned arrays of homogeneous objects. Note that
an ARRAY can contain only a single object, which can itself be another ARRAY or
COLLECTION if required. A maximum of 6 axes is allowed in an ARRAY. The optional _AXIS_
elements can be used to describe the variation between successive objects in the ARRAY.

Values for AXIS_ITEMS and _AXIS_ elements for multidimensional arrays are supplied as
sequences in which the right most item varies the fastest as the default.

The optional START_BYTE data element provides the starting location relative to an enclosing
object. If a START_BYTE is not specified, a value of 1 is assumed.

Required Keywords

1. AXES
2. AXIS_ITEMS
3. NAME

Optional Keywords

1. AXIS_INTERVAL
2. AXIS_NAME
3. AXIS_UNIT
4. AXIS_START
5. AXIS_STOP
6. AXIS_ORDER_TYPE
7. CHECKSUM
8. DESCRIPTION
9. INTERCHANGE_FORMAT
10. START_BYTE

Required Objects

None

Optional Objects

1. ARRAY
2. BIT_ELEMENT
3. COLLECTION
4. ELEMENT

Appendix A. PDS Data Object Definitions A-5

Example 1

The following is an example of a two dimensional Spectrum Array in a detached label.

PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1600
FILE_RECORDS = 180

DATA_SET_ID = "IHW-C-SPEC-2-EDR-HALLEY-V1.0"
OBSERVATION_ID = "704283"
TARGET_NAME = "HALLEY"
INSTRUMENT_HOST_NAME = "IHW SPECTROSCOPY AND SPECTROPHOTOMETRY NETWORK"
INSTRUMENT_NAME = "IHW SPECTROSCOPY AND SPECTROPHOTOMETRY"
PRODUCT_ID = "704283"
OBSERVATION_TIME = 1986-05-09T04:10:20.640Z
START_TIME = 1986-05-09T04:07:50.640Z
STOP_TIME = UNK
PRODUCT_CREATION_TIME = 1993-01-01T00:00:00.000Z
^ARRAY = "SPEC2702.DAT"
/* Description of Object in File */
OBJECT = ARRAY
NAME = "2D SPECTRUM"
INTERCHANGE_FORMAT = BINARY
AXES = 2
AXIS_ITEMS = (180,800)
AXIS_NAME = ("RHO","APPROXIMATE WAVELENGTH")
AXIS_UNIT = (ARCSEC,ANGSTROMS)
AXIS_INTERVAL = (1.5,7.2164)
AXIS_START = (1.0,5034.9)

OBJECT = ELEMENT
DATA_TYPE = MSB_INTEGER
BYTES = 2
NAME = COUNT
DERIVED_MAXIMUM = 2.424980E+04
DERIVED_MINIMUM = 0.000000E+00
OFFSET = 0.000000E+00
SCALING_FACTOR = 1.000000E+00
NOTE = "Conversion factor 1.45 may be applied to data to estimate photons/sq m/sec/

 angstrom at 6800 angstroms."
END_OBJECT = ELEMENT
END_OBJECT = ARRAY
END

Example 2

The following is an example of ARRAY, COLLECTION and ELEMENT primitive objects all used together.

PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 122
FILE_RECORDS = 7387

^ARRAY = "MISCHA01.DAT"

A-6 Appendix A. PDS Data Object Definitions

DATA_SET_ID = "VEGA1-C-MISCHA-3-RDR-HALLEY-V1.0"
TARGET_NAME = HALLEY
SPACECRAFT_NAME = "VEGA 1"
INSTRUMENT_NAME = "MAGNETOMETER"
PRODUCT_ID = "XYZ"
START_TIME = "UNK"
STOP_TIME = "UNK"
SPACECRAFT_CLOCK_START_COUNT = "UNK"
SPACECRAFT_CLOCK_STOP_COUNT = "UNK"

NOTE = "VEGA 1 MISCHA DATA"

OBJECT = ARRAY
NAME = MISCHA_DATA_FILE
INTERCHANGE_FORMAT = BINARY
AXES = 1
AXIS_ITEMS = 7387
DESCRIPTION = "This file contains an array of fixed length Mischa records."

OBJECT = COLLECTION
NAME = MISCHA_RECORD
BYTES = 122
DESCRIPTION = "Each record in this file consists of a time tag followed by a 20-element array

 of magnetic field vectors."

OBJECT = ELEMENT
NAME = START_TIME
BYTES = 2
DATA_TYPE = MSB_INTEGER
START_BYTE = 1
END_OBJECT = ELEMENT

OBJECT = ARRAY
NAME = MAGNETIC_FIELD_ARRAY
AXES = 2
AXIS_ITEMS = (3,20)
START_BYTE = 3
AXIS_NAME = ("XYZ_COMPONENT","TIME")
AXIS_UNIT = ("N/A" ,"SECOND")
AXIS_INTERVAL = ("N/A" , 0.2)
DESCRIPTION = "Magnetic field vectors were recorded at the rate
of 10 per second. The START_TIME field gives the time at which the first vector in the record was recorded. Successive vectors
were recorded at 0.2 second intervals."

OBJECT = ELEMENT
NAME = MAG_FIELD_COMPONENT_VALUE
BYTES = 2
DATA_TYPE = MSB_INTEGER
START_BYTE = 1
END_OBJECT = ELEMENT
END_OBJECT = ARRAY

END_OBJECT = COLLECTION

END_OBJECT = ARRAY
END

Appendix A. PDS Data Object Definitions A-7

A.3 BIT COLUMN

The BIT_COLUMN object identifies a string of bits that do not fall on even byte boundaries and
therefore cannot be described as a distinct COLUMN. BIT_COLUMNS defined within columns
are analogous to columns defined within rows.

Note: (1) The Planetary Data System recommends that all fields (within new objects)
should be defined on byte boundaries. This precludes having multiple values strung together in bit
strings, as occurs in the BIT_COLUMN object.
 (2) BIT_COLUMN is intended for use in describing existing binary data strings,
but is not recommended for use in defining new data objects because it will not be recognized by
most general purpose software.
 (3) A BIT_COLUMN must not contain embedded objects.

BIT_COLUMNS of the same format and size may be specified as a single BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_OFFSET elements. The ITEMS data element is used
to indicate the number of occurrences of a bit string.

Required Keywords

 1. NAME
 2. BIT_DATA_TYPE
 3. START_BIT
 4. BITS (required for BIT_COLUMNs without items)
 5. DESCRIPTION

Optional Keywords

 1. BIT_MASK
 2. BITS (optional for BIT_COLUMNs with items)
 3. FORMAT
 4. INVALID_CONSTANT
 5. ITEMS
 6. ITEM_BITS
 7. ITEM_OFFSET
 8. MINIMUM
 9. MAXIMUM
 10. MISSING_CONSTANT
 11. OFFSET
 12. SCALING_FACTOR
 13. UNIT

Required Objects

 None

A-8 Appendix A. PDS Data Object Definitions

Optional Objects

 None

Example

The example below was extracted from a larger example which can be found within the
CONTAINER object. The BIT_COLUMN object can be a sub-object of the TABLE or
CONTAINER object.
__

OBJECT =COLUMN
NAME =PACKET_ID
DATA_TYPE =LSB_BIT_STRING
START_BYTE =1
BYTES =2
VALID_MINIMUM =0
VALID_MAXIMUM =7
DESCRIPTION = "Packet_id constitutes one of three parts in the primary source information
header applied by the Payload Data System (PDS) to the MOLA telemetry packet at the time of creation of the packet prior to
transfer frame creation. "

OBJECT =BIT_COLUMN
NAME =VERSION_NUMBER
BIT_DATA_TYPE =MSB_UNSIGNED_INTEGER
START_BIT =1
BITS =3
MINIMUM =0
MAXIMUM =7
DESCRIPTION = "These bits identify Version 1 as the Source Packet structure. These bits shall
be set to '000'."
END_OBJECT =BIT_COLUMN

OBJECT =BIT_COLUMN
NAME =SPARE
BIT_DATA_TYPE =MSB_UNSIGNED_INTEGER
START_BIT =4
BITS =1
MINIMUM =0
MAXIMUM =0
DESCRIPTION ="Reserved spare. This bit shall be set to '0'"
END_OBJECT =BIT_COLUMN

OBJECT =BIT_COLUMN
NAME =FLAG
BIT_DATA_TYPE =BOOLEAN
START_BIT =5
BITS =1
MINIMUM =0
MAXIMUM =0
DESCRIPTION ="This flag signals the presence or absence of a Secondary Header data structure
within the Source Packet. This bit shall be set to '0' since no Secondary Header formatting standards currently exist for Mars
Observer."
END_OBJECT =BIT_COLUMN

OBJECT =BIT_COLUMN
NAME =ERROR_STATUS

Appendix A. PDS Data Object Definitions A-9

BIT_DATA_TYPE =MSB_UNSIGNED_INTEGER
START_BIT =6
BITS =3
MINIMUM =0
MAXIMUM =7
DESCRIPTION ="This field identifies in part the individual application process within the
spacecraft that created the Source Packet data."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT = 9
BITS = 8
MINIMUM = "N/A"
MAXIMUM = "N/A"
DESCRIPTION = "This field identifies in part the individual application process within the
spacecraft that created the Source Packet data. 00100011 is the bit pattern for MOLA."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

A-10 Appendix A. PDS Data Object Definitions

A.4 BIT ELEMENT (Primitive Data Object)

Under review.

Appendix A. PDS Data Object Definitions A-11

A.5 CATALOG

The CATALOG object is used within a VOLUME object to reference completed PDS high level
catalog templates. These templates provide additional information related to the data sets on the
volume. Please refer to the File Specification and Naming chapter in this document for more
information.

Required Keywords

None

Optional Keywords

1. DATA_SET_ID
2. LOGICAL_VOLUME_PATHNAME
3. LOGICAL_VOLUMES

Required Objects

1. DATA_SET
2. INSTRUMENT
3. INSTRUMENT_HOST
4. MISSION

Optional Objects

1. DATA_SET_COLLECTION
2. PERSONNEL
3. REFERENCE
4. TARGET

Example

The example under the VOLUME object provides an example of a CATALOG object where all
the Catalog Templates are included in a single file, CATALOG.CAT.

The example below is a VOLDESC.CAT file that demonstrates multiple data sets per volume. In
this example, the Catalog Templates are in separate files and are referenced by the use of pointers.
However, the catalog templates may also be included in-line - but this is not the recommended
approach (see Section 19.3, PDS Preferred Method for Supplying Catalog Objects).

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE ="RSimpson, 1998-07-01"
RECORD_TYPE = STREAM

OBJECT = VOLUME

A-12 Appendix A. PDS Data Object Definitions

VOLUME_SERIES_NAME = "VOYAGERS TO THE OUTER PLANETS"
VOLUME_SET_NAME = "VOYAGER NEPTUNE PLANETARY PLASMA INTERACTIONS DATA"
VOLUME_SET_ID = USA_NASA_PDS_VG_1001
VOLUMES = 1
VOLUME_NAME = "VOYAGER NEPTUNE PLANETARY PLASMA INTERACTIONS DATA"
VOLUME_ID = VG_1001
VOLUME_VERSION_ID = "VERSION 1"
VOLUME_FORMAT = "ISO-9660"
MEDIUM_TYPE = "CD-ROM"
PUBLICATION_DATE = 1992-11-13
DESCRIPTION = "This volume contains a collection of non-imaging Planetary Plasma datasets
from the Voyager 2 spacecraft encounter with Neptune. Included are datasets from the Cosmic Ray System (CRS), Plasma System
(PLS), Plasma Wave System (PWS), Planetary Radio Astronomy (PRA), Magnetometer (MAG), and Low Energy Charged Particle
(LECP) instruments, as well as spacecraft position vectors (POS) in several coordinate systems. The volume also contains
documentation and index files to support access and use of the data."

DATA_SET_ID = { "VG2-N-CRS-3-RDR-D1-6SEC-V1.0",
 "VG2-N-CRS-4-SUMM-D1-96SEC-V1.0",
 "VG2-N-CRS-4-SUMM-D2-96SEC-V1.0",
 "VG2-N-LECP-4-SUMM-SCAN-24SEC-V1.0",
 "VG2-N-LECP-4-RDR-STEP-12.8MIN-V1.0",
 "VG2-N-MAG-4-RDR-HG-COORDS-1.92SEC-V1.0",
 "VG2-N-MAG-4-SUMM-HG-COORDS-48SEC-V1.0",
 "VG2-N-MAG-4-RDR-HG-COORDS-9.6SEC-V1.0",
 "VG2-N-MAG-4-SUMM-NLSCOORDS-12SEC-V1.0",
 "VG2-N-PLS-5-RDR-2PROMAGSPH-48SEC-V1.0",
 "VG2-N-PLS-5-RDR-ELEMAGSPHERE-96SEC-V1.0",
 "VG2-N-PLS-5-RDR-IONMAGSPHERE-48SEC-V1.0",
 "VG2-N-PLS-5-RDR-IONLMODE-48SEC-V1.0",
 "VG2-N-PLS-5-RDR-IONMMODE-12MIN-V1.0",
 "VG2-N-PLS-5-RDR-ION-INBNDWIND-48SEC-V1.0",
 "VG2-N-POS-5-RDR-HGHGCOORDS-48SEC-V1.0",
 "VG2-N-POS-5-SUMM-NLSCOORDS-12-48SEC-V1.0",
 "VG2-N-PRA-4-SUMM-BROWSE-SEC-V1.0",
 "VG2-N-PRA-2-RDR-HIGHRATE-60MS-V1.0",
 "VG2-N-PWS-2-RDR-SA-4SEC-V1.0",
 "VG2-N-PWS-4-SUMM-SA-48SEC-V1.0",
 "VG2-N-PWS-1-EDR-WFRM-60MS-V1.0"}

OBJECT = DATA_PRODUCER
INSTITUTION_NAME = "UNIVERSITY OF CALIFORNIA, LOS ANGELES"
FACILITY_NAME = "PDS PLANETARY PLASMA INTERACTIONS NODE"
FULL_NAME = "DR. RAYMOND WALKER"
DISCIPLINE_NAME = "PLASMA INTERACTIONS"
ADDRESS_TEXT = "UCLA

IGPP
LOS ANGELES, CA 90024 USA"

END_OBJECT = DATA_PRODUCER

OBJECT = DATA_SUPPLIER
INSTITUTION_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
FACILITY_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
FULL_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
DISCIPLINE_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
ADDRESS_TEXT = "Code 633 \n
 Goddard Space Flight Center \n
 Greenbelt, Maryland, 20771, USA"
TELEPHONE_NUMBER = "3012866695"
ELECTRONIC_MAIL_TYPE = "NSI/DECNET"

Appendix A. PDS Data Object Definitions A-13

ELECTRONIC_MAIL_ID = "NSSDCA::REQUEST"
END_OBJECT = DATA_SUPPLIER

OBJECT = CATALOG
^MISSION_CATALOG = "MISSION.CAT"
^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
^INSTRUMENT_CATALOG = {"CRS_INST.CAT",
 "LECPINST.CAT",
 "MAG_INST.CAT",
 "PLS_INST.CAT",
 "PRA_INST.CAT",
 "PWS_INST.CAT"}
^DATA_SET_CATALOG = {"CRS_DS.CAT",
 "LECP_DS.CAT",
 "MAG_DS.CAT",
 "PLS_DS.CAT",
 "POS_DS.CAT",
 "PRA_DS.CAT",
 "PWS_DS.CAT"}
^TARGET_CATALOG = TGT.CAT
^PERSONNEL_CATALOG = PERS.CAT
^REFERENCE_CATALOG = REFS.CAT
END_OBJECT = CATALOG

END_OBJECT = VOLUME
END

A-14 Appendix A. PDS Data Object Definitions

A.6 COLLECTION (Primitive Data Object)

The COLLECTION object allows the ordered grouping of heterogeneous objects into a named
collection. The COLLECTION object may contain a mixture of different object types including
other COLLECTIONS. The optional START_BYTE data element provides the starting location
relative to an enclosing object. If a START_BYTE is not specified, a value of 1 is assumed.

Required Keywords

1. BYTES
2. NAME

Optional Keywords

1. DESCRIPTION
2. CHECKSUM
3. INTERCHANGE_FORMAT
4. START_BYTE

Required Objects

None

Optional Objects

1. ELEMENT
2. BIT_ELEMENT
3. ARRAY
4. COLLECTION

Example

Please refer to the example in the ARRAY Primitive object for an example of an implementation
of the COLLECTION object.

Appendix A. PDS Data Object Definitions A-15

A.7 COLUMN

The COLUMN object identifies a single column in a data object.

Note:(1) Current PDS-described data objects that include COLUMN objects are the TABLE,
 CONTAINER, SPECTRUM and SERIES objects.

(2) COLUMNs must not contain embedded COLUMN objects.
(3) COLUMNs of the same format and size may be specified as a single COLUMN by using

 the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements. The ITEMS data element
 indicates the number of occurrences of the field.

(4) BYTES and ITEM_BYTES counts do not include leading or trailing delimiters or line
 terminators.
(5) For a COLUMN with items, the value of BYTES should represent the size of the column
 including delimiters between the items. See examples 1 and 2 below.

Required Keywords

1. NAME
2. DATA_TYPE
3. START_BYTE
4. BYTES (required for COLUMNs without items)

Optional Keywords

1. BIT_MASK
2. BYTES (optional for COLUMNs with items)
3. DERIVED_MAXIMUM
4. DERIVED_MINIMUM
5. DESCRIPTION
6 . FORMAT
7. INVALID_CONSTANT
8. ITEM_BYTES
9. ITEM_OFFSET
10. ITEMS
11. MAXIMUM
12. MAXIMUM_SAMPLING_PARAMETER
13. MINIMUM
14. MINIMUM_SAMPLING_PARAMETER
15. MISSING_CONSTANT
16. OFFSET
17. SAMPLING_PARAMETER_INTERVAL
18. SAMPLING_PARAMETER_NAME
19. SAMPLING_PARAMETER_UNIT
20. SCALING_FACTOR
21. UNIT
22. VALID_MAXIMUM
23. VALID_MINIMUM

A-16 Appendix A. PDS Data Object Definitions

Required Objects

None

Optional Objects

1. BIT_COLUMN
2. ALIAS

Example 1

The example below shows the use of a COLUMN with items. In this example, the data described
is a column with three ASCII_INTEGER items: xx,yy, zz

The ITEM_OFFSET is the number of bytes from the beginning of one item to the beginning of the
next.

Note that the value of BYTES includes the comma delimiters between items.
__

OBJECT = COLUMN
NAME = COLUMNXYZ
DATA_TYPE = ASCII_INTEGER
START_BYTE = 1
BYTES = 8 /*includes delimiters*/
ITEMS = 3
ITEM_BYTES = 2
ITEM_OFFSET = 3
END_OBJECT = COLUMN

Example 2

The example below again shows the use of a COLUMN with items. In this example, the data
described is a column with three CHARACTER items: "xx", "yy", "zz"

__

OBJECT = COLUMN
NAME = COLUMNXYZ
DATA_TYPE = CHARACTER
START_BYTE = 2 /* value does not include leading quote */
BYTES = 12 /* value does not include leading and trailing

 quotes */
ITEMS = 3
ITEM_BYTES = 2 /* value does not include leading and trailing
 quotes */
ITEM_OFFSET = 5 /* value does not include leading quote */
END_OBJECT = COLUMN

Example 3

Appendix A. PDS Data Object Definitions A-17

The example below was extracted from a larger example which can be found under the
CONTAINER object. The COLUMN object is a sub-object of the TABLE, SERIES, SPECTRUM,
and CONTAINER objects.
__

OBJECT = COLUMN
NAME = PACKET_ID
DATA_TYPE = LSB_BIT_STRING
START_BYTE = 1
BYTES = 2
VALID_MINIMUM = 0
VALID_MAXIMUM = 7
DESCRIPTION = "Packet_id constitutes one of three parts in the primary source information
header applied by the Payload Data System (PDS) to the MOLA telemetry packet at the time of creation of the packet prior to
transfer frame creation. "

OBJECT = BIT_COLUMN
NAME = VERSION_NUMBER
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT = 1
BITS = 3
MINIMUM = 0
MAXIMUM = 7
DESCRIPTION = "These bits identify Version 1 as the Source Packet structure. These bits
shall be set to '000'."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = SPARE
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT = 4
BITS = 1
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "Reserved spare. This bit shall be set to '0'"
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = FLAG
BIT_DATA_TYPE = BOOLEAN
START_BIT = 5
BITS = 1
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "This flag signals the presence or absence of a Secondary Header data structure
within the Source Packet. This bit shall be set to '0' since no Secondary Header formatting standards currently exist for Mars
Observer."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = ERROR_STATUS
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT = 6
BITS = 3
MINIMUM = 0
MAXIMUM = 7
DESCRIPTION = "This field identifies in part the individual application process within the

A-18 Appendix A. PDS Data Object Definitions

spacecraft that created the Source Packet data."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT = 9
BITS = 8
MINIMUM = "N/A"
MAXIMUM = "N/A"
DESCRIPTION = "This field identifies in part the individual application process within the
spacecraft that creeated the Source Packet data. 00100011 is the bit pattern for MOLA."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CH_4_2ND_HALF_FRAME_BKGRND_CN
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 134
BYTES = 1
MINIMUM = 0
MAXIMUM = 255
DESCRIPTION = "The background energy or noise count levels in channels 1, 2, 3, and 4
respectively by half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5.3 bit format. Plog
base 2 of background count sum..."
END_OBJECT = COLUMN

Appendix A. PDS Data Object Definitions A-19

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNS) that repeat
within a data object (such as a TABLE). Use of the CONTAINER object allows repeating groups
to be defined within a data structure.

Required Keywords

1. NAME
2. START_BYTE
3. BYTES
4. REPETITIONS
5. DESCRIPTION

Optional Keywords

None

Required Objects

None

Optional Objects

1. COLUMN
2. CONTAINER

Example

The following diagram shows a data product layout in which the CONTAINER object is used. The diagram depicts the modelled
data product as a TABLE with one row (or one record of data). Each record within the diagram begins with 48 columns (143 bytes)
of engineering data. The data product acquires science data from seven different frames. Since the data from each frame are
formatted identically, one CONTAINER description can suffice for all seven frames.

In this example there are two CONTAINER objects. The first CONTAINER object describes the repeating frame information.
Within this CONTAINER there is a second CONTAINER object in which a 4-byte set of three COLUMN objects repeats 20 times.
The use of the second CONTAINER object permits the data supplier to describe the three COLUMNS (4 bytes) once, instead of
specifying sixty column definitions.

In the first CONTAINER, the keyword REPETITIONS is equal to 7. In the second CONTAINER, REPETITIONS equals 20. Both
CONTAINER objects contain a collection of COLUMN objects. In most cases it is preferable to save space in the product label by
placing COLUMN objects in a separate file and pointing to that file from within the CONTAINER object.

A-20 Appendix A. PDS Data Object Definitions

.

This attached label example describes the above TABLE structure using CONTAINER objects.

__

CCSD3ZF0000100000001NJPL3KS0PDSXAAAAAAAA
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
FILE_RECORDS = 467
RECORD_BYTES = 1080
LABEL_RECORDS = 4
FILE_NAME = "AEDR.001"

^MOLA_SCIENCE_MODE_TABLE = 5
DATA_SET_ID = "MO-M-MOLA-1-AEDR-L0-V1.0"
PRODUCT_ID = "MOLA-AEDR.-10010-0001"
SPACECRAFT_NAME = MARS_OBSERVER
INSTRUMENT_ID = MOLA
INSTRUMENT_NAME = MARS_OBSERVER_LASER_ALTIMETER
TARGET_NAME = MARS
SOFTWARE_NAME = "Browser 17.1"
UPLOAD_ID = "5.3"
PRODUCT_RELEASE_DATE = 1994-12-29T02:10:09.321
START_TIME = 1994-09-29T04:12:43.983
STOP_TIME = 1994-09-29T06:09:54.221
SPACECRAFT_CLOCK_START_COUNT = "12345"
SPACECRAFT_CLOCK_STOP_COUNT = "12447"
PRODUCT_CREATION_TIME = 1995-01-29T07:30:333
MISSION_PHASE_NAME = MAPPING
ORBIT_NUMBER = 0001
PRODUCER_ID = MO_MOLA_TEAM
PRODUCER_FULL_NAME = "DAVID E. SMITH"
PRODUCER_INSTITUTION_NAME = "GODDARD SPACE FLIGHT CENTER"
DESCRIPTION = "This data product contains the aggregation of MOLA telemetry packets by
Orbit. All Experiment Data Record Packets retrieved from the PDB are collected in this data product. The AEDR data product is
put together with the Project-provided software tool Browser."

48 Columns of
Eng./Hskeeping Data Fr 1 Fr 2 Fr 3 Fr 4 Fr 5 Fr 6 Fr 7

143 411 545 679 813 947 10801

Container # 1

Container # 2 3 Columns times 20 shots (S1-S20)

times 7 frames (Fr 1-Fr7)46 Columns

1 81 134

1 4

277

S
1

S
2
0

Appendix A. PDS Data Object Definitions A-21

OBJECT = MOLA_SCIENCE_MODE_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 463
COLUMNS = 97
ROW_BYTES = 1080
^STRUCTURE = "MOLASCI.FMT"
DESCRIPTION = "This table is one of two that describe the arrangement of information on the
Mars Observer Laser Altimeter (MOLA) Aggregated Engineering Data Record (AEDR). ..."

END_OBJECT = MOLA_SCIENCE_MODE_TABLE
...

END
CCSD$$MARK$$AAAAAAAANJPL3IF0NNNN00000001

Contents of the MOLASCI.FMT file

OBJECT = COLUMN
NAME = PACKET_ID
DATA_TYPE = LSB_BIT_STRING
START_BYTE = 1
BYTES = 2
VALID_MINIMUM = 0
VALID_MAXIMUM = 7
DESCRIPTION = "Packet_id constitutes one of three parts in the primary source information
header applied by the Payload Data System (PDS) to the MOLA telemetry packet at the time of creation of the packet prior to
transfer frame creation. "

OBJECT = BIT_COLUMN
NAME = VERSION_NUMBER
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT = 1
BITS = 3
MINIMUM = 0
MAXIMUM = 7
DESCRIPTION = "These bits identify Version 1 as the Source Packet structure. These bits shall
be set to '000'."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = SPARE
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT = 4
BITS = 1
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "Reserved spare. This bit shall be set to '0'"
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = SECONDARY_HEADER_FLAG
BIT_DATA_TYPE = BOOLEAN
START_BIT = 5
BITS = 1
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "This flag signals the presence or absence of a Secondary Header data
structure within the Source Packet. This bit shall be set to '0' since no Secondary Header formatting standards currently exist for

A-22 Appendix A. PDS Data Object Definitions

Mars Observer."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = ERROR_STATUS
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT = 6
BITS = 3
MINIMUM = 0
MAXIMUM = 7
DESCRIPTION = "This field identifies in part the individual application process within the
spacecraft that created the Source Packet data."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT = 9
BITS = 8
MINIMUM = 2#0100011#
MAXIMUM = 2#0100011#
DESCRIPTION = "This field identifies in part the individual application process within the
spacecraft that created the Source Packet data. 00100011 is the bit pattern for MOLA."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

...

OBJECT = COLUMN
NAME = COMMAND_ECHO
DATA_TYPE = INTEGER
START_BYTE = 125
BYTES = 16
ITEMS = 8
ITEM_BYTES = 2
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "First 8 command words received during current packet, only complete
commands are stored, MOLA specific commands only. The software attempts to echo all valid commands. If the command will fit
in the room remaining in the..."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PACKET_VALIDITY_CHECKSUM
DATA TYPE = INTEGER
START_BYTE = 141
BYTES = 2
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Simple 16 bit addition of entire packet contents upon completion. This
location is zeroed for addition. This word is zeroed, then words 0-539 are added without carry to a variable that is initially zero. The
resulting lower 16 bits ar..."
END_OBJECT = COLUMN

OBJECT = CONTAINER
NAME = FRAME_STRUCTURE
^STRUCTURE = "MOLASCFR.FMT" /*points to the columns */
 /*that make up the frame descriptors */
START_BYTE = 143

Appendix A. PDS Data Object Definitions A-23

BYTES = 134
REPETITIONS = 7
DESCRIPTION = "The frame_structure container represents the format of seven repeating
groups of attributes in this data product. The data product reflects science data acquisition from seven different frames. Since the
data from each frame are ..."
END_OBJECT = CONTAINER

CONTENTS OF THE MOLASCFR.FMT FILE
--

OBJECT = CONTAINER
NAME = COUNTS
START_BYTE = 1
BYTES = 4
REPETITIONS = 20
^STRUCTURE = "MOLASCCT.FMT"
DESCRIPTION = "This container has three sub-elements (range to surface counts, 1st channel
received pulse energy, and 2nd channel received pulse energy). The three sub-elements repeat for each of 20 shots."
END_OBJECT = CONTAINER

OBJECT = COLUMN
NAME = SHOT_2_LASER_TRANSMITTER_POWR
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 81
BYTES = 1
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "..."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SHOT_1_LASER_TRANSMITTER_POWR
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 82
BYTES = 1
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "..."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SHOT_4_LASER_TRANSMITTER_POWR
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 83
BYTES = 1
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "..."
END_OBJECT = COLUMN

...

OBJECT = COLUMN
NAME = CH_3_2ND_HALF_FRAME_BKGRND_CN
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 133
BYTES = 1
MINIMUM = 0
MAXIMUM = 255

A-24 Appendix A. PDS Data Object Definitions

DESCRIPTION = "The background energy or noise count levels in channels 1, 2, 3, and 4
respectively by half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5.3 bit format. Plog
base 2 of background count sum..."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CH_4_2ND_HALF_FRAME_BKGRND_CN
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 134
BYTES = 1
MINIMUM = 0
MAXIMUM = 255
DESCRIPTION = "The background energy or noise count levels in channels 1, 2, 3, and 4
respectively by half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5.3 bit format. Plog
base 2 of background count sum..."
END_OBJECT = COLUMN

CONTENTS OF THE MOLASCCT.FMT FILE
--

OBJECT = COLUMN
NAME = RANGE_TO_SURFACE_TIU_CNTS
DATA_TYPE = MSB_INTEGER
START_BYTE = 1
BYTES = 2
DESCRIPTION = "The possible 20 valid frame laser shots surface ranging measurements in
Timing Interval Unit (TIU) counts. The least significant 16 bits of TIU (SLTIU), stored for every shot. B[0] = Bits 15-8 of TIU
reading; B[1] = Bits 7-0 of ..."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FIRST_CH_RCVD_PULSE_ENRGY
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 3
BYTES = 1
DESCRIPTION = "The level of return, reflected energy as received by the first channel and
matched filter to trigger. This is a set of values for all possible 20 shots within the frame. Lowest numbered non-zero energy
reading for each shot."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SECOND_CH_RCVD_PULSE_ENRGY
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 4
BYTES = 1
DESCRIPTION = "The level of return, reflected energy as received by the second channel and
matched filter to trigger. This is a set of values for all possible 20 shots within the frame. 2nd lowest numbered non-zero energy
reading for each shot..."
END_OBJECT = COLUMN

Appendix A. PDS Data Object Definitions A-25

A.9 DATA PRODUCER

The DATA_PRODUCER object is used within a PDS object, such as VOLUME. The
DATA_PRODUCER, as opposed to the DATA_SUPPLIER, is an individual or organization
responsible for collecting, assembling, and/or engineering the raw data into one or more data sets.

Required Keywords

1. INSTITUTION_NAME
2. FACILITY_NAME
3. FULL_NAME
4. ADDRESS_TEXT

Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME
3. TELEPHONE_NUMBER
4. ELECTRONIC_MAIL_TYPE
5. ELECTRONIC_MAIL_ID

Required Objects

None

Optional Objects

None

Example

The example below was extracted from a larger example which can be found within the VOLUME
object. The DATA_PRODUCER object is a required object of the VOLUME.
__

OBJECT = DATA_PRODUCER
INSTITUTION_NAME = "U.S.G.S. FLAGSTAFF"
FACILITY_NAME = "BRANCH OF ASTROGEOLOGY"
FULL_NAME = "Eric M. Eliason"
DISCIPLINE_NAME = "IMAGE PROCESSING"
ADDRESS_TEXT = " Branch of Astrogeology
 United States Geological Survey
 2255 North Gemini Drive
 Flagstaff, Arizona. 86001 USA"
END_OBJECT = DATA_PRODUCER

A-26 Appendix A. PDS Data Object Definitions

A.10 DATA SUPPLIER

The DATA_SUPPLIER object is used within a PDS object, such as VOLUME. The
DATA_SUPPLIER, as opposed to the DATA_PRODUCER, is an individual or organization
responsible for distributing the data sets and associated data to the science community.

Required Keywords

1. INSTITUTION_NAME
2. FACILITY_NAME
3. FULL_NAME
4. ADDRESS_TEXT
5. TELEPHONE_NUMBER
6. ELECTRONIC_MAIL_TYPE
7. ELECTRONIC_MAIL_ID

Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME

Required Objects

None

Optional Objects

None

Example

The example below was extracted from a larger example which can be found within the VOLUME
object. The DATA_SUPPLIER object is an optional object of the VOLUME.
__

OBJECT = DATA_SUPPLIER
INSTITUTION_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
FACILITY_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
FULL_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
DISCIPLINE_NAME = "NATIONAL SPACE SCIENCE DATA CENTER"
ADDRESS_TEXT = "Code 633
 Goddard Space Flight Center
 Greenbelt, Maryland, 20771, USA"
 TELEPHONE_NUMBER = "3012866695"
ELECTRONIC_MAIL_TYPE = "NSI/DECNET"
ELECTRONIC_MAIL_ID = "NSSDCA::REQUEST"
END_OBJECT = DATA_SUPPLIER

Appendix A. PDS Data Object Definitions A-27

A.11 DIRECTORY

The DIRECTORY object is used to define a hierarchical file organization on a linear (sequential)
media, such as tape. The DIRECTORY object identifies all directories and subdirectories below
the root level, and is a required sub-object of the VOLUME object for tape media.

Note: The root directory on a volume does not need to be explicitly defined with the DIRECTORY
object.

Subdirectories are identified by embedding DIRECTORY objects. Files within the directories and
subdirectories are sequentially identified by using FILE objects with a sequence_number value
corresponding to their position on the media. A sequence_number value will be unique for each
file on the media. This format is strongly recommended when transferring or archiving volumes of
data on media which do not support hierarchical directory structures (i.e., submitting a tape volume
of data for pre-mastering or preparing an archive tape).

Although the DIRECTORY object is optional in the VOLUME object, it is a required object for
tape media.

Required Keywords

1. NAME

Optional Keywords

1. RECORD_TYPE
2. SEQUENCE_NUMBER

Required Objects

1. FILE

Optional Objects

1. DIRECTORY

A-28 Appendix A. PDS Data Object Definitions

Example

The example below was extracted from a larger example which can be found within the VOLUME
object.
__

OBJECT = DIRECTORY
NAME = INDEX

OBJECT = FILE
FILE_NAME = "INDXINFO.TXT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 5
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "INDEX.LBL"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 6
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "INDEX.TAB"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 6822
SEQUENCE_NUMBER = 7
END_OBJECT = FILE
END_OBJECT = DIRECTORY

Appendix A. PDS Data Object Definitions A-29

A.12 DOCUMENT

The DOCUMENT object is used to label a particular document that is provided on a volume to
support an archived data product. A document can be made up of one or more files in a single
format. For instance, a document may be comprised of as many TIFF files as there are pages in the
document.

Multiple versions of a document can be supplied on a volume with separate formats, requiring a
DOCUMENT object for each document version (i.e., OBJECT = TEX_DOCUMENT and
OBJECT = PS_DOCUMENT when including both the TEX and Postscript versions of the same
document).

PDS requires that at least one version of any document be plain ASCII text in order to allow users
the capability to read, browse, or search the text without requiring software or text processing
packages. This version can be plain, unmarked text, or ASCII text containing a markup language.
(See the Documentation chapter of this document for more details.)

The DOCUMENT object contains keywords that identify and describe the document, provide the
date of publication of the document, indicate the number of files comprising the document, provide
the format of the document files, and identify the software used to compress or encode the
document, as applicable.

DOCUMENT labels must be detached files unless the files are plain, unmarked text that will not
be read by text or word processing packages. A DOCUMENT object for each format type of a
document can be included in the same label file with pointers, such as ^TIFF_DOCUMENT for a
TIFF formatted document. (See example below.)

Required Keywords

1. DOCUMENT_NAME
2. DOCUMENT_TOPIC_TYPE
3. INTERCHANGE_FORMAT
4. DOCUMENT_FORMAT
5. PUBLICATION_DATE

Optional Keywords

1. ABSTRACT_TEXT
2. DESCRIPTION
3. ENCODING_TYPE
4. FILES

Required Objects

None

A-30 Appendix A. PDS Data Object Definitions

Optional Objects

None

Example

The following example detached label, PDSUG.LBL, is for a Document provided in three formats:
ASCII text, TIFF, and TEX.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = UNDEFINED

^ASCII_DOCUMENT = "PDSUG.ASC"
^TIFF_DOCUMENT = { "PDSUG001.TIF", "PDSUG002.TIF",

 "PDSUG003.TIF", "PDSUG004.TIF" }
^TEX_DOCUMENT = "PDSUG.TEX"

OBJECT = ASCII_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog User's Guide"
PUBLICATION_DATE = 1992-04-13
DOCUMENT_TOPIC_TYPE = "USER'S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEXT

DESCRIPTION = "The Planetary Data System Data Set Catalog User's Guide describes the
fundamentals of accessing, searching, browsing, and ordering data from the PDS Data Set Catalog at the Central Node. The text
for this 4-page document is provided here in this plain, ASCII text file."
ABSTRACT_TEXT = "The PDS Data Set Catalog is similar in function and purpose to a card catalog
in a library. Use a Search screen to find data items, a List/Order screen to order data items, and the More menu option to see more
information."
END_OBJECT = ASCII_DOCUMENT

OBJECT = TIFF_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog User's Guide"
DOCUMENT_TOPIC_TYPE = "USER'S GUIDE"
INTERCHANGE_FORMAT = BINARY
DOCUMENT_FORMAT = TIFF
PUBLICATION_DATE = 1992-04-13
FILES = 4
ENCODING_TYPE = "CCITT/3"
DESCRIPTION = "
The Planetary Data System Data Set Catalog User's Guide describes the fundamentals of accessing, searching, browsing, and
ordering data from the PDS Data Set Catalog at the Central Node.
The 4-page document is provided here in 4 consecutive files, one file per page, in Tagged Image File Format (TIFF) using Group
3 compression. It has been tested to successfully import into WordPerfect 5.0, FrameMaker, and Photoshop."
ABSTRACT_TEXT = "
The PDS Data Set Catalog is similar in function and purpose to a card catalog in a library. Use a Search screen to find data items,
a List/Order screen to order data items, and the More menu option to see more information."
END_OBJECT = TIFF_DOCUMENT

OBJECT = TEX_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog User's Guide"
DOCUMENT_TOPIC_TYPE = "USER'S GUIDE"

Appendix A. PDS Data Object Definitions A-31

INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEX
PUBLICATION_DATE = 1992-04-13
DESCRIPTION = "
The Planetary Data System Data Set Catalog User's Guide describes the fundamentals of accessing, searching, browsing, and
ordering data from the PDS Data Set Catalog at the Central Node.
The 4-page document is provided here in TeX format with all necessary macros included."
ABSTRACT_TEXT = "
The PDS Data Set Catalog is similar in function and purpose to a card catalog in a library. Use a Search screen to find data items,
a List/Order screen to order data items, and the More menu option to see more information."
END_OBJECT = TEX_DOCUMENT
END

A-32 Appendix A. PDS Data Object Definitions

A.13 ELEMENT (Primitive Data Object)

The ELEMENT object provides a means of defining a lowest level component of a data object that
is stored in an integral multiple of 8-bit bytes. Element objects may be embedded in
COLLECTION and ARRAY data objects. The optional START_BYTE element identifies a
location relative to the enclosing object. If not explicitly included, a START_BYTE = 1 is assumed
for the ELEMENT.

Required Keywords

1. BYTES
2. DATA_TYPE
3. NAME

Optional Keywords

1. START_BYTE
2. BIT_MASK
3. DERIVED_MAXIMUM
4. DERIVED_MINIMUM
5. DESCRIPTION
6. FORMAT
7. INVALID_CONSTANT
8. MINIMUM
9. MAXIMUM
10. MISSING_CONSTANT
11. OFFSET
12. SCALING_FACTOR
13. UNIT
14. VALID_MINIMUM
15. VALID_MAXIMUM

Required Objects

None

Optional Objects

None

Example

Please refer to the example in the ARRAY Primitive object for an example of the implementation
of the ELEMENT object.

Appendix A. PDS Data Object Definitions A-33

A.14 FILE

The FILE object is used in attached or detached labels to define the attributes or characteristics of
a data file. In attached labels, the file object is also used to indicate boundaries between label
records and data records in data files which have attached labels. The FILE object may be used in
three ways:

(1) As an implicit object in attached or detached labels. As depicted in the following example, all
detached label files and attached labels contain an implicit FILE object which starts at the top of
the label and ends where the label ends. In these cases, the PDS recommends against using the
NAME keyword to reference the file name.
--
 RECORD_TYPE = FIXED_LENGTH
 RECORD_BYTES = 80
 FILE_RECORDS = 522
 LABEL_RECORDS = 10
 (remainder of the label)

For data products labelled using the implicit file object (e.g. for minimal labels)
DATA_OBJECT_TYPE = FILE should be used in the Data Set Catalog Template.

(2) As an explicit object which is used when a file reference is needed in a combined detached or
minimal label. In this case, the optional FILE_NAME element is used to identify the file being
referenced.

 OBJECT = FILE
 FILE_NAME = "IM10347.DAT"
 RECORD_TYPE = STREAM
 FILE_RECORDS = 1024
 (other optional keywords describing the file)
 END_OBJECT = FILE

For data products labelled using the explicit file object (e.g. for minimal labels)
DATA_OBJECT_TYPE = FILE should be used in the Data Set Catalog Template.

(3) As an explicit object to identify specific files as sub-objects of the DIRECTORY in VOLUME
objects. In this case, the optional FILE_NAME element is used to identify the file being referenced
on a tape archive volume.

 OBJECT = FILE
 FILE_NAME = "VOLDESC.CAT"
 RECORD_TYPE = STREAM
 SEQUENCE_NUMBER = 1
 END_OBJECT = FILE

A-34 Appendix A. PDS Data Object Definitions

The keywords in the FILE object always describe the file being referenced, and not the file in
which the keywords are contained (i.e., if the FILE object is used in a detached label file, the FILE
object keywords describe the detached data file, not the label file which contains the keywords).
For example, if a detached label for a data file is being created and the label will be in STREAM
format, but the data will be stored in a file having FIXED_LENGTH records, then the
RECORD_TYPE keyword in the label file must be given the value FIXED_LENGTH.

The following table identifies data elements that are required (Req), optional (Opt), and not
applicable (-) for various types of files

Labeling Method Att Det Att Det Att Det Att Det

RECORD_TYPE FIXED_LENGTH VARIABLE_LENGTH STREAM UNDEFINED

RECORD_BYTES Req Req Rmax Rmax Omax - - -

FILE_RECORDS Req Req Req Req Opt Opt - -

LABEL_RECORDS Req - Req - Opt - - -

Required Keywords

1. RECORD_TYPE

 (See above table for the conditions of use of additional required keywords)

Optional Keywords

1. FILE_NAME (required only in minimal detached labels and tape archives)
2. FILE_RECORDS (required only in minimal detached labels and tape archives)
3. LABEL_RECORDS
4. RECORD_BYTES
5. SEQUENCE_NUMBER

Required Objects

 None

Optional Objects

 None

Appendix A. PDS Data Object Definitions A-35

Example

Below is an example of a set of explicit file objects in a combined detached label. An additional
example of the use of explicit FILE object can be found in the VOLUME object.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
HARDWARE_MODEL_ID = "SUN SPARC STATION"
OPERATING_SYSTEM_ID = "SUN OS 4.1.1"
SPACECRAFT_NAME = "VOYAGER 2"
INSTRUMENT_NAME = "PLASMA WAVE RECEIVER"
MISSION_PHASE_NAME = "URANUS ENCOUNTER"
TARGET_NAME = URANUS
DATA_SET_ID = "VG2-U-PWS-4-RDR-SA-48.0SEC-V1.0"
PRODUCT_ID = "T860123-T860125"

OBJECT = FILE
FILE_NAME = "T860123.DAT"
FILE_RECORDS = 1800
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 105
START_TIME = 1986-01-23T00:00:00.000Z
STOP_TIME = 1986-01-24T00:00:00.000Z
^TIME_SERIES = "T860123.DAT"

OBJECT = TIME_SERIES
INTERCHANGE_FORMAT = BINARY
ROWS = 1800
ROW_BYTES = 105
COLUMNS = 19
^STRUCTURE = "PWS_DATA.FMT"
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 48.0
END_OBJECT = TIME_SERIES
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "T860124.DAT"
FILE_RECORDS = 1800
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 105
START_TIME = 1986-01-24T00:00:00.000Z
STOP_TIME = 1986-01-25T00:00:00.000Z
^TIME_SERIES = "T860124.DAT"

OBJECT = TIME_SERIES
INTERCHANGE_FORMAT = BINARY
ROWS = 1800
ROW_BYTES = 105
COLUMNS = 19
^STRUCTURE = "PWS_DATA.FMT"
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 48.0
END_OBJECT = TIME_SERIES
END_OBJECT = FILE

A-36 Appendix A. PDS Data Object Definitions

OBJECT = FILE
FILE_NAME = "T860125.DAT"
FILE_RECORDS = 1799
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 105
START_TIME = 1986-01-30T00:00:00.000Z
STOP_TIME = 1986-01-30T23:59:12.000Z
^TIME_SERIES = "T860125.DAT"

OBJECT = TIME_SERIES
INTERCHANGE_FORMAT = BINARY
ROWS = 1799
ROW_BYTES = 105
COLUMNS = 19
^STRUCTURE = "PWS_DATA.FMT"
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 48.0
END_OBJECT = TIME_SERIES
END_OBJECT = FILE

END

Appendix A. PDS Data Object Definitions A-37

A.15 GAZETTEER_TABLE

The GAZETTEER_TABLE object is a specific type of a TABLE object that provides information
about the geographical features of a planet or satellite. It contains information about a named
feature such as location, size, origin of feature name, etc. The GAZETTEER_TABLE contains one
row for each feature named on the target body. The table is formatted so that it may be read directly
by many data management systems on various host computers. All fields (columns) are separated
by commas, and character fields are enclosed by double quotation marks. Each record consist of
480 bytes, with a carriage return/line feed sequence in bytes 479 and 480. This allows the table to
be treated as a fixed length record file on hosts that support this file type and as a normal text file
on other hosts.

Currently the PDS Imaging Node at the USGS is the data producer for all GAZETTEER_TABLEs.

Required Keywords

1. NAME
2. INTERCHANGE_FORMAT
3. ROWS
4. COLUMNS
5. ROW_BYTES
6. DESCRIPTION

Optional Keywords

None

Required Objects

1. COLUMN

Optional Objects

None

Required COLUMN Objects (NAME =)

 TARGET_NAME
 SEARCH_FEATURE_NAME
 DIACRITIC_FEATURE_NAME
 MINIMUM_LATITUDE
 MAXIMUM_LATITUDE
 CENTER_LATITUDE
 MINIMUM_LONGITUDE
 MAXIMUM_LONGITUDE

A-38 Appendix A. PDS Data Object Definitions

 CENTER_LONGITUDE
 LABEL_POSITION_ID
 FEATURE_LENGTH
 PRIMARY_PARENTAGE_ID
 SECONDARY_PARENTAGE_ID
 MAP_SERIAL_ID
 FEATURE_STATUS_TYPE
 APPROVAL_DATE
 FEATURE_TYPE
 REFERENCE_NUMBER
 MAP_CHART_ID
 FEATURE_DESCRIPTION

Required Keywords (for Required COLUMN Objects)

 NAME
 DATA_TYPE
 START_BYTE
 BYTES
 FORMAT
 UNIT
 DESCRIPTION

Example
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 480
FILE_RECORDS = 1181
PRODUCT_ID =XYZ
TARGET_NAME = MARS
^GAZETTEER_TABLE = "GAZETTER.TAB"

OBJECT = GAZETTEER_TABLE
NAME = "PLANETARY NOMENCLATURE GAZETTEER"
INTERCHANGE_FORMAT = ASCII
ROWS = 1181
COLUMNS = 20
ROW_BYTES = 480
DESCRIPTION = "The gazetteer (file: GAZETTER.TAB) is a table of geographical features for
a planet or satellite. It contains information about a named feature such as location, size, origin of feature name, etc. The Gazetteer
Table contains one row for each feature named on the target body. The table is formatted so that it may be read directly into many
data management systems on various host computers. All fields (columns) are separated by commas, and character fields are
preceded by double quotation marks. Each record consist of 480 bytes, with a carriage return/line feed sequence in bytes 479 and
480. This allows the table to be treated as a fixed length record file on hosts that support this file type and as a normal text file on
other hosts."

OBJECT = COLUMN
NAME = TARGET_NAME
DATA_TYPE = CHARACTER

Appendix A. PDS Data Object Definitions A-39

START_BYTE = 2
BYTES = 20
FORMAT = "A20"
UNIT = "N/A"
DESCRIPTION = "The planet or satellite on which the feature is located."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SEARCH_FEATURE_NAME
DATA_TYPE = CHARACTER
START_BYTE = 25
BYTES = 50
FORMAT = "A50"
UNIT = "N/A"
DESCRIPTION = "The geographical feature name with all diacritical marks stripped off. This
name is stored in upper case only so that it can be used for sorting and search purposes. This field should not be used to designate
the name of the feature because it does not contain the diacritical marks. Feature names not containing diacritical marks can often
take on a completely different meaning and in some cases the meaning can be deeply offensive."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = DIACRITIC_FEATURE_NAME
DATA_TYPE = CHARACTER
START_BYTE = 78
BYTES = 100
FORMAT = "A100"
UNIT = "N/A"
DESCRIPTION = "The geographical feature name containing standard diacritical information. A
detailed description of the diacritical mark formats are described in the gazetteer documentation.

 DIACRITICALS USED IN THE TABLE

 The word diacritic comes from a Greek word meaning to separate. It refers to the accent marks employed to separate, or
distinguish, one form of pronunciation of a vowel or consonant from another.

 This note is included to familiarize the user with the codes used to represent diacriticals found in the table, and the values
usually associated with them. In the table, the code for a diacritical is preceded by a backslash and is followed, without a space, by
the letter it is modifying.

 This note is organized as follows: the code is listed first, followed by the name of the accent mark, if applicable, a brief
description of the appearance of the diacritical and a short narrative on its usage.
 acute accent; a straight diagonal line extending from upper right to lower left. The acute accent is used in most languages to
lengthen a vowel; in some, such as Oscan, to denote an open vowel. The acute is also often used to indicate the stressed syllable;
in some transcriptions it indicates a palatalized consonant.

 diaeresis or umlaut; two dots surmounting the letter. In Romance languages and English, the diaeresis is used to indicate that
consecutive vowels do not form a dipthong (see below); in modern German and Scandinavian languages, it denotes palatalization
of vowels.

 circumflex; a chevron or inverted 'v' shape, with the apex at the top. Used most often in modern languages to indicate
lengthening of a vowel.

 tilde; a curving or waving line above the letter. The tilde is a form of circumflex. The tilde is used most often in Spanish to
form a palatalized n as in the word 'ano', pronounced 'anyo'. It is also used occasionally to indicate nasalized vowels.

 macron; a straight line above the letter. The macron is used almost universally to lengthen a vowel.

 breve; a concave semicircle or 'u' shape surmounting the letter. Originally used in Greek, the breve indicates a short vowel.

A-40 Appendix A. PDS Data Object Definitions

 a small circle or 'o' above the letter. Frequently used in Scandinavian languages to indicate a broad 'o'.

 e dipthong or ligature; transcribed as two letters in contact with each other. The dipthong is a combination of vowels that are
pronounced together.

 cedilla; a curved line surmounted by a vertical line, placed at the bottom of the letter. The cedilla is used in Spanish and French
to denote a dental, or soft, 'c'. In the new Turkish transcription, 'c' cedilla has the value of English 'ch'. In Semitic languages, the
cedilla under a consonant indicates that it is emphatic.

 check or inverted circumflex; a 'v' shape above the letter. This accent is used widely in Slavic languages to indicate a palatal
articulation, like the consonant sounds in the English words chapter and shoe and the 'zh' sound in pleasure.

 a single dot above the letter. This diacritical denotes various things; in Lithuanian, it indicates a close long vowel. In Sanskrit,
when used with 'n', it is a velar sound, as in the English 'sink'; in Irish orthography, it indicates a fricative consonant (see below).

 accent grave; a diagonal line (above the letter) extending from upper left to lower right. The grave accent is used in French,
Spanish and Italian to denote open vowels.

 fricative; a horizontal line through a consonant. A fricative consonant is characterized by a frictional rustling of the breath as
it is emitted."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINIMUM_LATITUDE
DATA_TYPE = REAL
START_BYTE = 180
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The minimum_latitude element specifies the southernmost latitude of a spatial
area, such as a map, mosaic, bin, feature, or region."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAXIMUM_LATITUDE
DATA_TYPE = REAL
START_BYTE = 188
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The maximum_latitude element specifies the northernmost latitude of a
spatial area, such as a map, mosaic, bin, feature, or region."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CENTER_LATITUDE
DATA_TYPE = REAL
START_BYTE = 196
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The center latitude of the feature."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINIMUM_LONGITUDE
DATA_TYPE = REAL

Appendix A. PDS Data Object Definitions A-41

START_BYTE = 204
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The minimum_longitude element specifies the easternmost latitude of a
spatial area, such as a map, mosaic, bin, feature, or region. "
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAXIMUM_LONGITUDE
DATA_TYPE = REAL
START_BYTE = 212
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The maximum_longitude element specifies the westernmost longitude of a
spatial area, such as a map, mosaic, bin, feature, or region. "
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CENTER_LONGITUDE
DATA_TYPE = REAL
START_BYTE = 220
BYTES = 7
FORMAT = "F7.2"
UNIT = DEGREE
DESCRIPTION = "The center longitude of the feature."
 END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = LABEL_POSITION_ID
DATA_TYPE = CHARACTER
START_BYTE = 229
BYTES = 2
FORMAT = "A2"
UNIT = "N/A"
DESCRIPTION = "The suggested plotting position of the feature name (UL=Upper left,
UC=Upper center, UR=Upper right, CL=Center left, CR=Center right, LL=Lower left, LC=Lower center, LR=Lower right). This
field is used to instruct the plotter where to place the typographical label with respect to the center of the feature. This code is used
to avoid crowding of names in areas where there is a high density of named features."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FEATURE_LENGTH
DATA_TYPE = REAL
START_BYTE = 233
BYTES = 8
FORMAT = "F8.2"
UNIT = KILOMETER
DESCRIPTION = "The longer or longest dimension of an object. For the Gazetteer usage, this
field refers to the length of the named feature."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PRIMARY_PARENTAGE_ID
DATA_TYPE = CHARACTER
START_BYTE = 243
BYTES = 2
FORMAT = "A2"

A-42 Appendix A. PDS Data Object Definitions

UNIT = "N/A"
DESCRIPTION = "This field contains the primary origin of the feature name (i.e. where the name
originated). It contains a code for the continent or country origin of the name. Please see Appendix 5 of the gazetteer documentation
(GAZETTER.TXT) for a definition of the codes used to define the continent or country."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SECONDARY_PARENTAGE_ID
DATA_TYPE = CHARACTER
START_BYTE = 248
BYTES = 2
FORMAT = "A2"
UNIT = "N/A"
DESCRIPTION = "This field contains the secondary origin of the feature name. It contains a code
for a country, state, territory, or ethnic group. Please see Appendix 5 of the gazetteer documentation (GAZETTER.TXT) for a
defintion of the codes in this field."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAP_SERIAL_ID
DATA_TYPE = CHARACTER
START_BYTE = 253
BYTES = 6
FORMAT = "A6"
UNIT = "N/A"
DESCRIPTION = "The identification of the map that contains the named feature. This field
represents the map serial number of the map publication used for ordering maps from the U.S. Geological Survey. The map
identified in this field best portrays the named feature."
 END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FEATURE_STATUS_TYPE
DATA_TYPE = CHARACTER
START_BYTE = 262
BYTES = 12
FORMAT = "A12"
UNIT = "N/A"
DESCRIPTION = "The IAU approval status of the named feature. Permitted values are
'PROPOSED', 'PROVISIONAL', 'IAU-APPROVED', and 'DROPPED'. Dropped names have been disallowed by the IAU.
However, these features have been included in the gazetteer for historical purposes. Some named features that are disallowed by the
IAU may commonly be used on some maps."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = APPROVAL_DATE
DATA_TYPE = INTEGER
START_BYTE = 276
BYTES = 4
FORMAT = "I4"
UNIT = "N/A"
DESCRIPTION = "Date at which an object has been approved by the officially sanctioned
organization. This field contains the year the IAU approved the feature name."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FEATURE_TYPE
DATA_TYPE = CHARACTER
START_BYTE = 282

Appendix A. PDS Data Object Definitions A-43

BYTES = 20
FORMAT = "A20"
UNIT = "N/A"
DESCRIPTION = "The feature type identifies the type of a particular feature, according to IAU
standards. Examples are 'CRATER', 'TESSERA', 'TERRA', etc. See Appendix 7 of the gazetteer documentation
(GAZETTER.TXT).
DESCRIPTOR TERMS (FEATURE TYPES)

FEATURE DESCRIPTION

ALBEDO FEATURE Albedo feature

CATENA Chain of craters

CAVUS Hollows, irregular depressions

CHAOS Distinctive area of broken terrain

CHASMA Canyon

COLLES Small hill or knob

CORONA Ovoid-shaped feature

CRATER Crater

DORSUM Ridge

ERUPTIVE CENTER Eruptive center

FACULA Bright spot

FLEXUS Cuspate linear feature

FLUCTUS Flow terrain

FOSSA Long, narrow, shallow depression

LABES Landslide

LABYRINTHUS Intersecting valley complex

LACUS Lake

LARGE RINGED FEATURE Large ringed feature

LINEA Elongate marking

MACULA Dark spot

MARE Sea

MENSA Mesa, flat-topped elevation

MONS Mountain

OCEANUS Ocean

PALUS Swamp

PATERA Shallow crater; scalloped, complex edge

PLANITIA Low plain

PLANUM Plateau or high plain

PROMONTORIUM Cape

REGIO Region

RIMA Fissure

RUPES Scarp

A-44 Appendix A. PDS Data Object Definitions

SCOPULUS Lobate or irregular scarp

SINUS Bay

SULCUS Subparallel furrows and ridges

TERRA Extensive land mass

TESSERA Tile; polygonal ground

THOLUS Small domical mountain or hill

UNDAE Dunes

VALLIS Sinuous valley

VASTITAS Widespread lowlands

VARIABLE FEATURE Variable feature "

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = REFERENCE_NUMBER
DATA_TYPE = INTEGER
START_BYTE = 304
BYTES = 4
FORMAT = "I4"
UNIT = "N/A"
DESCRIPTION = "Literature reference from which the spelling and description of the feature
name was derived. See Appendix 6 of the gazetteer documentation (GAZETTER.TXT)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAP_CHART_ID
DATA_TYPE = CHARACTER
START_BYTE = 310
BYTES = 6
FORMAT = "A6"
UNIT = "N/A"
DESCRIPTION = "This field contains the abbreviation of the map designator or chart
identification (example MC-19, MC-18, etc.)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FEATURE_DESCRIPTION
DATA_TYPE = CHARACTER
START_BYTE = 319
BYTES = 159
FORMAT = "A159"
UNIT = "N/A"
DESCRIPTION = "Short description of the feature name."
END_OBJECT = COLUMN
END_OBJECT = GAZETTEER_TABLE

END

Appendix A. PDS Data Object Definitions A-45

A.16 HEADER

The HEADER object is used to identify and define the attributes of commonly used header data
structures such as VICAR or FITS. These structures are usually system or software specific and
are described in detail in a referenced description text file. The use of bytes within the header object
refers to the number of bytes for the entire header, not a single record.

Required Keywords

1. BYTES
2. HEADER_TYPE

Optional Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. RECORDS

Required Objects

None

Optional Objects

None

Example

The following example shows the detached label file "TIMTC02A.LBL". The label describes the
data product file "TIMTC02A.IMG" which contains a HEADER object followed by an IMAGE
object.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
/* PDS label for a TIMS image */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 638
FILE_RECORDS = 39277
/* Pointers to objects */
^IMAGE_HEADER = ("TIMTC02A.IMG",1)
^IMAGE = ("TIMTC02A.IMG",2)
/* Image description */
DATA_SET_ID = "C130-E-TIMS-2-EDR-IMAGE-V1.0"
PRODUCT_ID = "TIMTC02A"
INSTRUMENT_HOST_NAME = "NASA C-130 AIRCRAFT"
INSTRUMENT_NAME = "THERMAL INFRARED MULTISPECTRAL SCANNER"
TARGET_NAME = EARTH
FEATURE_NAME = "TRAIL CANYON FAN"
START_TIME = 1989-09-29T21:47:35Z

A-46 Appendix A. PDS Data Object Definitions

STOP_TIME = 1989-09-29T21:47:35Z
CENTER_LATITUDE = 36.38
CENTER_LONGITUDE = 116.96
INCIDENCE_ANGLE = 0.0
EMISSION_ANGLE = 0.0
/* Description of objects */
OBJECT = IMAGE_HEADER
BYTES = 638
RECORDS = 1
HEADER_TYPE = VICAR2
INTERCHANGE_FORMAT = BINARY
^DESCRIPTION = "VICAR2.TXT"
END_OBJECT = IMAGE_HEADER

OBJECT = IMAGE
LINES = 6546
LINE_SAMPLES = 638
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS = 8
SAMPLE_BIT_MASK = 2#11111111#
BANDS = 6
BAND_STORAGE_TYPE = LINE_INTERLEAVED
END_OBJECT = IMAGE
END

Appendix A. PDS Data Object Definitions A-47

A.17 HISTOGRAM

The HISTOGRAM object is a sequence of numeric values that provides the number of occurrences
of a data value or a range of data values in a data object. The number of items in a histogram will
normally be equal to the number of distinct values allowed in a field of the data object. For
example, an 8 bit integer field can have a maximum of 256 values, and would result in a 256 item
histogram. Histograms may be used to bin data, in which case an offset and scaling factor indicate
the dynamic range of the data represented.

The following equation allows the calculation of the range of each 'bin' in the histogram.

'bin lower boundary' = 'bin element' * scale_factor + offset

Required Keywords

1. ITEMS
2. DATA_TYPE
3. ITEM_BYTES

Optional Keywords

1. BYTES
2. INTERCHANGE_FORMAT
3. OFFSET
4. SCALING_FACTOR

Required Objects

None

Optional Objects

None

Example
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
/* FILE FORMAT AND LENGTH */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 956
FILE_RECORDS = 965
LABEL_RECORDS = 3

/* POINTERS TO START RECORDS OF OBJECTS IN FILE */

^IMAGE_HISTOGRAM = 4

A-48 Appendix A. PDS Data Object Definitions

^IMAGE = 6

/* IMAGE DESCRIPTION */

DATA_SET_ID = "VO1/VO2-M-VIS-5-DIM-V1.0"
PRODUCT_ID = "MG15N022-GRN-666A"
SPACECRAFT_NAME = VIKING_ORBITER_1
TARGET_NAME = MARS
START_TIME = 1978-01-14T02:00:00
STOP_TIME = 1978-01-14T02:00:00
SPACECRAFT_CLOCK_START_TIME = UNK
SPACECRAFT_CLOCK_STOP_TIME = UNK
PRODUCT_CREATION_TIME = 1995-01-01T00:00:00
ORBIT_NUMBER = 666
FILTER_NAME = GREEN
IMAGE_ID = "MG15N022-GRN-666A"
INSTRUMENT_NAME = {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}
NOTE = "MARS MULTI-SPECTRAL MDIM SERIES"
/* SUN RAYS EMISSION, INCIDENCE, AND PHASE ANGLES OF IMAGE CENTER*/
SOURCE_PRODUCT_ID =" 666A36"
EMISSION_ANGLE = 21.794
INCIDENCE_ANGLE = 66.443
PHASE_ANGLE = 46.111

/* DESCRIPTION OF OBJECTS CONTAINED IN FILE */

OBJECT = IMAGE_HISTOGRAM
ITEMS = 256
DATA_TYPE = VAX_INTEGER
ITEM_BYTES = 4
END_OBJECT = IMAGE_HISTOGRAM

OBJECT = IMAGE
LINES = 960
LINE_SAMPLES = 956
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS = 8
SAMPLE_BIT_MASK = 2#11111111#
CHECKSUM = 65718982
/* I/F = SCALING_FACTOR*DN + OFFSET, CONVERT TO INTENSITY/FLUX */
SCALING_FACTOR = 0.001000
OFFSET = 0.0
/* OPTIMUM COLOR STRETCH FOR DISPLAY OF COLOR IMAGES */
STRETCHED_FLAG = FALSE
STRETCH_MINIMUM = (53, 0)
STRETCH_MAXIMUM = (133,255)
END_OBJECT = IMAGE

END

Appendix A. PDS Data Object Definitions A-49

A.18 HISTORY

A HISTORY object is a dynamic description of the history of one or more associated data objects
in a file. It supplements the essentially static description contained in the PDS label.

The HISTORY object contains text in a format similar to that of the ODL statements used in the
label. It identifies previous computer manipulation of the principal data object(s) in the file. It
includes an identification of the source data, processes performed, processing parameters, as well
as dates and times of processing. It is intended that the history be available for display, be
dynamically extended by any process operating on the data, and automatically propagated to the
resulting data file. Eventually, it might be extracted for loading in detailed level catalogs of data
set contents.

The HISTORY object is structured as a series of History Entries, one for each process which has
operated on the data. Each entry contains a standard set of ODL element assignment statements,
delimited by GROUP = program_name and END_GROUP = program_name statements. A
subgroup in each entry, delimited by GROUP = PARAMETERS and END_GROUP =
PARAMETERS, contains statements specifying the values of all parameters of the program.

 HISTORY ENTRY ELEMENTS

Attribute Description

VERSION_DATE Program version date, ISO standard format.

DATE_TIME Run date and time, ISO standard format.

NODE_NAME Network name of computer.

USER_NAME Username.

SOFTWARE_DESC Program-generated (brief) description.

USER_NOTE User-supplied (brief) description.

Unlike the above elements, the names of the parameters defined in the PARAMETERS subgroup
are uncontrolled, and must only conform to the program.

The last entry in a HISTORY object is followed by an END statement. The HISTORY object, by
convention, follows the PDS label of the file, beginning on a record boundary, and is located by a
pointer statement in the label. There are no required elements for the PDS label description of the
object; it is represented in the label only by the pointer statement, and OBJECT = HISTORY and
END_OBJECT = HISTORY statements.

The HISTORY capability has been implemented as part of the Integrated Software for Imaging
Spectrometers (ISIS) system (see QUBE object definition). ISIS Qube applications add their own
entries to the Qube file's cumulative History object. ISIS programs run under NASA's TAE
(Transportable Applications Executive) system, and are able to automatically insert all parameters
of their TAE procedure into the history entry created by the program. Consult the ISIS System
Design document for details and limitations imposed by that system. (See the QUBE object
description for further references.)

A-50 Appendix A. PDS Data Object Definitions

Required Keywords

None
Optional Keywords

None

Required Objects

None

Optional Objects

None

Example

The following single-entry HISTORY object is from a Vicar-generated PDS-labeled qube file.
(See the Qube object example.) There's only one entry because the qube (or rather its label) was
generated by a single program, VISIS. A qube generated by multiple ISIS programs would have
multiple history entries, represented by multiple GROUPs in the HISTORY object.
__
This diagram illustrates the placement of the example HISTORY object within a Qube data product
with an attached PDS label.

 GROUP = VISIS

 VERSION_DATE = 1990-11-08

CCSD. . ..
.
.

^HISTORY =

END
GROUP=VISIS

END-GROUP=VISIS

} PDS
LABEL

HISTORY}
} QUBE

END

Appendix A. PDS Data Object Definitions A-51

 DATE_TIME = 1991-07-25T10:12:52
 SOFTWARE_DESC = "ISIS cube file with PDS label has been generated as systematic product by
MIPL using the following programs:
 NIMSMERGE to create EDR's;
 NIMSCMM to create the merged mosaic & geometry cube;
 HIST2D to create a two-dimensional histogram;
 SPECPLOT to create the spectral plots;
 TRAN, F2, and INSERT3D to create the SII cube;
 VISIS to create the ISIS cube."

 USER_NOTE = "VPDIN1/ Footprint, Limbfit, Height=50"

 GROUP = PARAMETERS
 EDR_FILE_NAME = " " /*EDR accessed through MIPL Catalog*/
 IMAGE_ID = NULL
 SPICE_FILE_NAME = " "
 SPIKE_FILE_NAME = "mipl:[mipl.gll]boom_obscuration.nim"
 DARK_VALUE_FILE_NAME = " "
 CALIBRATION_FILE_NAME = "ndat:nimsgs2.cal"
 MERGED_MOSAIC_FILE_NAME = "ndat:vpdin1_dn_fp_lf_h50.CUB"
 DARK_INTERPOLATION_TYPE = NOUPDAT
 PHOTOMETRIC_CORRECTION_TYPE = NONE
 CUBE_NIMSEL_TYPE = NOCAL
 BINNING_TYPE = FOOTPRNT
 FILL_BOX_SIZE = 0
 FILL_MIN_VALID_PIXELS = 0
 SUMMARY_IMAGE_RED_ID = 0
 SUMMARY_IMAGE_GREEN_ID = 0
 SUMMARY_IMAGE_BLUE_ID = 0
 ADAPT_STRETCH_SAT_FRAC = 0.000000
 ADAPT_STRETCH_SAMP_FRAC = 0.000000
 RED_STRETCH_RANGE = (0, 0)
 GREEN_STRETCH_RANGE = (0, 0)
 BLUE_STRETCH_RANGE = (0, 0)
 END_GROUP = PARAMETERS
 END_GROUP = VISIS
 END

A-52 Appendix A. PDS Data Object Definitions

A.19 IMAGE

An IMAGE object is an array of sample values. Image objects are normally processed with special
display tools to produce a visual representation of the sample values. This is done by assigning
brightness levels or display colors to the various sample values. Images are composed of LINES
and SAMPLES. They may contain multiple bands, in one of several storage orders.

Simple IMAGE objects are defined as having LINES as the number of horizontal lines, with each
line having LINE_SAMPLES as the number of sample values defined. The default sample values
are 8-bit unsigned binary integer. The sample size can be over- ridden using the SAMPLE_BITS
keyword (e.g. SAMPLE_BITS = 32). The SAMPLE_TYPE keyword can be used to override the
default SAMPLE_TYPE (e.g. SAMPLE_TYPE = VAX_REAL).

Each line of an IMAGE object may also be organized with a set of PREFIX or SUFFIX bytes,
which provide engineering parameters related to each line. The PREFIX or SUFFIX area is treated
as a TABLE object which has been concatenated with the IMAGE object. Each physical record in
the file contains a row of the PREFIX or SUFFIX table and a line of the IMAGE. While this is a
commonly used format for IMAGE storage, it can cause difficulties if used with general purpose
display and processing software. In particular, most programs will consider the PREFIX and
SUFFIX as part of the image, meaning that statistics generated for the image (mean, standard
deviation, etc.) will be in error. It is recommended that PREFIX or SUFFIX information be stored
as a separate TABLE data object in separate records within the file and not concatenated with the
image data. (See Figure A.1.)

Most images are composed of LINES containing a horizontal array of SAMPLES. However some
imaging sensors may scan in a vertical direction, creating an array of vertical lines, as in the case of
the Viking Lander camera system.

More complex IMAGE formats include multi-band images, where SAMPLES or LINES of the
same scene from several spectral bands are combined in one object, by sample
(SAMPLE_INTERLEAVED), or by line (LINE_INTERLEAVED). Another IMAGE format is
TILED, where a large IMAGE is divided into smaller pieces (TILES) to provide efficient access.

Figure A.2 illustrates the BANDS, BAND_NAME, and BAND_STORAGE_TYPE keywords that
can be used to describe multi-band images.

Note: Additional engineering values may be prepended or appended to each LINE of an image, and
are stored as concatenated TABLE objects, which must be named LINE_PREFIX and
LINE_SUFFIX. IMAGE objects may be associated with other objects, including HISTOGRAMs,
PALETTEs, HISTORY and TABLEs which contain statistics, display parameters, engineering
values or other ancillary data.

Appendix A. PDS Data Object Definitions A-53

LINE 1

LINE 2

LINE 3

LINE 4

LINE 5

LINE 6

LINE 7

LINE 8

LINE 9
ETC...

BAND_STORAGE_TYPE= LINE_INTERLEAVED

LINE 1

LINE 2

LINE 3

LINE 4

ETC...

BAND_STORAGE_TYPE=SAMPLE_INTERLEAVED

BLUE

GREEN

REDLINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7
LINE 8

BANDS=3, BAND_STORAGE_TYPE=BAND_SEQUENTIAL

BAND_NAME = (RED, GREEN, BLUE)

Figure A.2: Keywords for a Multi-Band Image

P
R
E
F
I
X

S
U
F
F
I
X

LINE_SAMPLES = 15LINES = 10

SAMPLE_BITS=8
SAMPLE_TYPE=UNSIGNED_INTEGER

Record

1
2
.
.
.

10

Figure A.1: Prefix and Suffix Bytes attached to an Image

A-54 Appendix A. PDS Data Object Definitions

Required Keywords

1. LINES
2. LINE_SAMPLES
3. SAMPLE_TYPE
4. SAMPLE_BITS

Optional Keywords

1. BAND_SEQUENCE
2. BAND_STORAGE_TYPE
3. BANDS
4. CHECKSUM
5. DERIVED_MAXIMUM
6. DERIVED_MINIMUM
7. DESCRIPTION
8. ENCODING_TYPE
9. FIRST_LINE
10. FIRST_LINE_SAMPLE
11. INVALID_CONSTANT
12. LINE_PREFIX_BYTES
13. LINE_SUFFIX_BYTES
14. MISSING _CONSTANT
15. OFFSET
16. SAMPLE_BIT_MASK
17. SAMPLING_FACTOR
18. SCALING_FACTOR
19. SOURCE_FILE_NAME
20. SOURCE_LINES
21. SOURCE_LINE_SAMPLES
22. SOURCE_SAMPLE_BITS
23. STRETCHED_FLAG
24. STRETCH_MINIMUM
25. STRETCH_MAXIMUM

Required Objects

None

Optional Objects

None

Appendix A. PDS Data Object Definitions A-55

Example

This is an example of an attached IMAGE label for a color digital mosaic image from the Mars
Digital Image Map CD-ROMs. It includes a CHECKSUM to support automated volume
production and validation, a SCALING_FACTOR to indicate the relationship between sample
values and geophysical parameters and stretch keywords to indicate optimal values for image
display.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3

/* FILE FORMAT AND LENGTH */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 956
FILE_RECORDS = 965
LABEL_RECORDS = 3

/* POINTERS TO START RECORDS OF OBJECTS IN FILE */

^IMAGE_HISTOGRAM = 4
^IMAGE = 6

/* IMAGE DESCRIPTION */

DATA_SET_ID = "VO1/VO2-M-VIS-5-DIM-V1.0"
PRODUCT_ID = "MG15N022-GRN-666A"
SPACECRAFT_NAME = VIKING_ORBITER_1
TARGET_NAME = MARS
IMAGE_TIME = 1978-01-14T02:00:00
START_TIME = UNK
STOP_TIME = UNK
SPACECRAFT_CLOCK_START_COUNT = UNK
SPACECRAFT_CLOCK_STOP_COUNT = UNK
PRODUCT_CREATION_TIME = 1995-01-01T00:00:00
ORBIT_NUMBER = 666
FILTER_NAME = GREEN
IMAGE_ID = "MG15N022-GRN-666A"
INSTRUMENT_NAME = {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,

VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}
NOTE = "MARS MULTI-SPECTRAL MDIM SERIES"
SOURCE_PRODUCT_ID = "666A36"
EMISSION_ANGLE = 21.794
INCIDENCE_ANGLE = 66.443
PHASE_ANGLE = 46.111

/* DESCRIPTION OF OBJECTS CONTAINED IN FILE */

OBJECT = IMAGE_HISTOGRAM
ITEMS = 256
DATA_TYPE = VAX_INTEGER
ITEM_BYTES = 4
END_OBJECT = IMAGE_HISTOGRAM

A-56 Appendix A. PDS Data Object Definitions

OBJECT = IMAGE
LINES = 960
LINE_SAMPLES = 956
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS = 8
SAMPLE_BIT_MASK = 2#11111111#
CHECKSUM = 65718982
SCALING_FACTOR = 0.001000 /* I/F = scaling factor * DN + offset, */
 /* convert to intensity/flux. */
OFFSET = 0.0
STRETCHED_FLAG = FALSE /* Optimum color stretch for display */
STRETCH_MINIMUM = (53, 0) /* of color images. */
STRETCH_MAXIMUM = (133,255)
END_OBJECT = IMAGE

END

Appendix A. PDS Data Object Definitions A-57

A.20 IMAGE MAP PROJECTION

The IMAGE_MAP_PROJECTION object is one of two distinct objects that define the map
projection used in creating the digital images in a PDS data set.The name of the other associated
object that completes the definition is called DATA_SET_MAP_PROJECTION.(see Appendix B)

The map projection information resides in these two objects, essentially to reduce data redundancy
and at the same time allow the inclusion of elements needed to process the data at the image level.
Basically, static information that is applicable to the complete data set reside in the
DATA_SET_MAP_PROJECTION object, while dynamic information that is applicable to the
individual images reside in the IMAGE_MAP_PROJECTION object.

The line_first_pixel, line_last_pixel, sample_first_pixel, and sample_last_pixel keywords are used
to indicate which way is up in an image. Sometimes an image can be shifted or flipped prior to it
being physically recorded. These keywords are used in calculating the mapping of pixels between
the original image and the stored image.

The following equations give the byte offsets needed to determine the mapping of a pixel (X,Y)
from the original image to a pixel in the stored image:

The sample offset from the first pixel is:

sample_bits * (Y - sample_first_pixel) * line_samples
 8 * (sample_last_pixel - sample_first_pixel + 1)

The line offset from the first image line is:

 (X - line_first_pixel) * lines
(line_last_pixel - line_first_pixel + 1)

Additionally, in any image, ABS (sample_last_pixel - sample_first_pixel + 1) is always equal to
line_samples, and ABS (line_last_pixel - line_first_pixel + 1) is always equal to lines.

A-58 Appendix A. PDS Data Object Definitions

Example

Take a 1K by 1K 8-bit image which is rotated about the x-axis 180 degrees prior to being physically
recorded.

Original Image: Positive direction is to the right and down

Stored Image: Positive direction is to the right and up

These pixel location values (*) are the positions from the original image. For example, the first
pixel in the stored image (normally referred to as (1,1)) came from the position (1,1024) in the
original image. These original values are used for the following IMAGE_MAP_PROJECTION
keywords in the PDS label for the stored image:

sample_first_pixel = 1
sample_last_pixel = 1024
line_first_pixel = 1024
line_last_pixel = 1

Now, given a pixel on the original image, P(X,Y) = (2,2) determine its location (P') in the stored
image.

first pixel (sample, line) = (1,1)

(1024,1)

last pixel (1024, 1024)

Image P
(1,1024)

first pixel (sample, line) = (1,1024)*

(1024,1024)*

last pixel (1024,1)*

Image P
(1,1)*

Appendix A. PDS Data Object Definitions A-59

sample offset = (8 * (2 - 1) * 1024) / (8 * (1024 - 1 + 1)) = 1
line offset = ((2 - 1024) * 1024) / (1 - 1024 + 1) = (-1022)

Therefore, P' is located at (2, 1023) which is 1 byte from the first sample, and 1022 bytes (in the
negative direction) from the first line in the stored image. See diagram above.

Required Keywords

1. MAP_PROJECTION_TYPE
2. A_AXIS_RADIUS
3. B_AXIS_RADIUS
4. C_AXIS_RADIUS
5. FIRST_STANDARD_PARALLEL
6. SECOND_STANDARD_PARALLEL
7. POSITIVE_LONGITUDE_DIRECTION
8. CENTER_LATITUDE
9. CENTER_LONGITUDE
10. REFERENCE_LATITUDE
11. REFERENCE_LONGITUDE
12. LINE_FIRST_PIXEL
13. LINE_LAST_PIXEL
14. SAMPLE_FIRST_PIXEL
15. SAMPLE_LAST_PIXEL
16. MAP_PROJECTION_ROTATION
17. MAP_RESOLUTION
18. MAP_SCALE
19. MAXIMUM_LATITUDE
20. MINIMUM_LATITUDE
21. EASTERNMOST_LONGITUDE
22. WESTERNMOST_LONGITUDE
23. LINE_PROJECTION_OFFSET
24. SAMPLE_PROJECTION_OFFSET
25. COORDINATE_SYSTEM_TYPE
26. COORDINATE_SYSTEM_NAME

Optional Keywords

1. DATA_SET_ID
2. IMAGE_ID
3. HORIZONTAL_FRAMELET_OFFSET
4. VERTICAL_FRAMELET_OFFSET

Required Objects

1. DATA_SET_MAP_PROJECTION

A-60 Appendix A. PDS Data Object Definitions

Optional Objects

None

Example

PDS_VERSION_ID = PDS3

/* File characteristics */
RECORD_TYPE = STREAM

/* Identification data elements */
DATA_SET_ID = "MGN-V-RDRS-5-GVDR-V1.0"
DATA_SET_NAME = "MAGELLAN VENUS RADAR SYSTEM GLOBAL DATA RECORD
V1.0"
PRODUCT_ID = "IMP-NORTH.100"

MISSION_NAME = "MAGELLAN"
SPACECRAFT_NAME = "MAGELLAN"
INSTRUMENT_NAME = "RADAR SYSTEM"
TARGET_NAME = "VENUS"

ORBIT_START_NUMBER = 376
ORBIT_STOP_NUMBER = 4367
START_TIME = "N/A"
STOP_TIME = "N/A"
SPACECRAFT_CLOCK_START_COUNT = "N/A"
SPACECRAFT_CLOCK_STOP_COUNT = "N/A"

PRODUCT_CREATION_TIME = 1994-05-07T22:09:27.000
PRODUCT_RELEASE_DATE = 1994-05-13
PRODUCT_SEQUENCE_NUMBER = 00000
PRODUCT_VERSION_TYPE = "PRELIMINARY"

SOURCE_DATA_SET_ID = {"MGN-V-RDRS-5-SCVDR-V1.0",
"MGN-V-RDRS-CDR-ALT/RAD-V1.0"}
SOURCE_PRODUCT_ID = {"SCVDR.00376-00399.1","SCVDR.00400-00499.1",
"SCVDR.01100-01199.1","SCVDR.01200-01299.1","SCVDR.01300-01399.1",
"SCVDR.01400-01499.1","SCVDR.01500-01599.1","SCVDR.01600-01699.1",
"SCVDR.01700-01799.1","SCVDR.01800-01899.1","SCVDR.01900-01999.1",
"ARCDRCD.001;2","ARCDRCD.002;1","ARCDRCD.003;1","ARCDRCD.004;1",
"ARCDRCD.005;1","ARCDRCD.006;1","ARCDRCD.007;1","ARCDRCD.008;1",
"ARCDRCD.017;1","ARCDRCD.018;1","ARCDRCD.019;1"}

SOFTWARE_FLAG = "Y"

PRODUCER_FULL_NAME = "MICHAEL J. MAURER"
PRODUCER_INSTITUTION_NAME = "STANFORD CENTER FOR RADAR ASTRONOMY"
PRODUCER_ID = "SCRA"
DESCRIPTION = "This file contains a single
 IMAGE_MAP_PROJECTION data object with an attached PDS label."

/* Data object definitions */
OBJECT = IMAGE_MAP_PROJECTION
 ^DATA_SET_MAP_PROJECTION = "DSMAP.CAT"
 COORDINATE_SYSTEM_TYPE = "BODY-FIXED ROTATING"
 COORDINATE_SYSTEM_NAME = "PLANETOCENTRIC"

Appendix A. PDS Data Object Definitions A-61

 MAP_PROJECTION_TYPE = "STEREOGRAPHIC"
 A_AXIS_RADIUS = 6051.0 <KM>
 B_AXIS_RADIUS = 6051.0 <KM>
 C_AXIS_RADIUS = 6051.0 <KM>
 FIRST_STANDARD_PARALLEL = "N/A"
 SECOND_STANDARD_PARALLEL = "N/A"
 POSITIVE_LONGITUDE_DIRECTION = "EAST"
 CENTER_LATITUDE = 90
 CENTER_LONGITUDE = 0
 REFERENCE_LATITUDE = "N/A"
 REFERENCE_LONGITUDE = "N/A"
 LINE_FIRST_PIXEL = 1
 LINE_LAST_PIXEL = 357
 SAMPLE_FIRST_PIXEL = 1
 SAMPLE_LAST_PIXEL = 357
 MAP_PROJECTION_ROTATION = 0
 MAP_RESOLUTION = 5.79478 <PIXEL/DEGREE>
 MAP_SCALE = 18.225 <KM/PIXEL>
 MAXIMUM_LATITUDE = 90.00
 MINIMUM_LATITUDE = 60.00
 EASTERNMOST_LONGITUDE = 360.00
 WESTERNMOST_LONGITUDE = 0.00
 LINE_PROJECTION_OFFSET = 178
 SAMPLE_PROJECTION_OFFSET = 178
END_OBJECT = IMAGE_MAP_PROJECTION
END

A-62 Appendix A. PDS Data Object Definitions

A.21 INDEX_TABLE

The INDEX_TABLE object is a specific type of a TABLE object that provides information about
the data stored on an archive volume. The INDEX_TABLE contains one row for each data file (or
data product label file, in the case where detached labels are used) on the volume. The table is
formatted so that it may be read directly by many data management systems on various host
computers. All fields (columns) are separated by commas, and character fields are enclosed by
double quotation marks. Each record ends in a carriage return/line feed sequence. This allows the
table to be treated as a fixed length record file on hosts that support this file type and as a normal
text file on other hosts.

There are two categories of columns for an Index table, identification and search. PDS data element
names should be used as column names wherever appropriate.

The required columns are used for identification. The optional columns are data dependent and are
used for search. For example, the following may be useful for searching:
 Location (e.g. LATITUDE, LONGITUDE, ORBIT_NUMBER)
 Time (e.g. START_TIME, SPACECRAFT_CLOCK_START_COUNT)
 Feature (e.g. FEATURE_TYPE)
 Observational characteristics (e.g. INCIDENCE_ANGLE)
 Instrument characteristics (e.g. FILTER_NAME)

For archive volumes created before version 3.2 of the PDS standards, if the keyword
INDEX_TYPE is not present, the value is defaulted to SINGLE, unless the Index's filename is
given as CUMINDEX.TAB or axxCMIDX.TAB (with axx representing up to three alphanumeric
characters).

If the keyword INDEXED_FILE_NAME is not present for a SINGLE index, the value is defaulted
to "*.*" if attached labels are used, or "*.LBL" if detached labels are used. This indicates that the
index encompasses all data product files on the volume.

If the INDEXED_FILE_NAME keyword is not present for a cumulative index, the default value
is "*.TAB" for files in the INDEX subdirectory.

Note: See section 17.2 for information about the use of N/A, UNK and NULL in an INDEX table.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS
3. COLUMNS
4. ROW_BYTES
5. INDEX_TYPE

Appendix A. PDS Data Object Definitions A-63

Optional Keywords

1. NAME
2. DESCRIPTION
3. INDEXED_FILE_NAME
4. UNKNOWN_CONSTANT
5. NOT_APPLICABLE_CONSTANT

Required Objects

1. COLUMN

Optional Objects

None

Required COLUMN Objects (NAME=)

 FILE_SPECIFICATION_NAME or PATH_NAME and FILE_NAME
 PRODUCT_ID (**)
 VOLUME_ID (*)
 DATA_SET_ID (*)
 PRODUCT_CREATION_TIME (*)
 LOGICAL_VOLUME_PATH_NAME (must be used with PATH_NAME
 and FILE_NAME for a logical volume) (*)

(*) If the value is constant across the data in the index table, this keyword can appear in the index
table’s label.
If the value is not constant, then a column of the given name must be used.

(**) PRODUCT_ID is not required if it has the same value as FILE_NAME
or FILE_SPECIFICATION_NAME.

Required Keywords (for Required COLUMN Objects)

 NAME
 DATA_TYPE
 START_BYTE
 BYTES
 DESCRIPTION

A-64 Appendix A. PDS Data Object Definitions

Optional COLUMN Objects (NAME=)

 MISSION_NAME
 INSTRUMENT_NAME (or ID)
 INSTRUMENT_HOST_NAME (or ID) (or SPACECRAFT_NAME or ID)
 TARGET_NAME
 PRODUCT_TYPE
 MISSION_PHASE_NAME
 VOLUME_SET_ID
 START_TIME
 STOP_TIME
 SPACECRAFT_CLOCK_START_COUNT
 SPACECRAFT_CLOCK_STOP_COUNT
 any other search columns

Appendix A. PDS Data Object Definitions A-65

Example (see additional example in A.27.1)
__

 CCSD3ZF0000100000001NJPL3IF0PDSX00000001
 PDS_VERSION_ID = PDS3

 RECORD_TYPE = FIXED_LENGTH
 RECORD_BYTES = 180
 FILE_RECORDS = 220
 DESCRIPTION = "INDEX.TAB lists all data files on this volume"
 ^INDEX_TABLE = "INDEX.TAB"

 OBJECT = INDEX_TABLE
 INTERCHANGE_FORMAT = ASCII
 ROW_BYTES = 180
 ROWS = 220
 COLUMNS = 9
 INDEX_TYPE = SINGLE
 INDEXED_FILE_NAME = {"*.AMD","*.ION","*.TIM","*.TRO",
 "*.WEA","*.LIT","*.MIF","*.MPD",
 "*.ODF","*.ODR","*.ODS","*.SFO",
 "*.SOE","*.TDF"}

 OBJECT = COLUMN
 NAME = VOLUME_ID
 DESCRIPTION = "Identifies the volume containing the named file"
 DATA_TYPE = CHARACTER
 START_BYTE = 2
 BYTES = 9
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = DATA_SET_ID
 DESCRIPTION = "The data set identifier. Acceptable values include

 ’MO-M-RSS-1-OIDR-V1.0’"
 DATA_TYPE = CHARACTER
 START_BYTE = 14
 BYTES = 25
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = PATH_NAME
 DESCRIPTION = "Path to directory containing file.
 Acceptable values include:

 'AMD ',
 'ION ',
 'TIM ',
 'TRO',
 'WEA ',
 'LIT ',
 'MIF ',
 'MPD ',
 'ODF ',
'ODR ',

 'ODS ',
 'SFO ',
 'SOE', and
 'TDF '."

A-66 Appendix A. PDS Data Object Definitions

 DATA_TYPE = CHARACTER
 START_BYTE = 42
 BYTES = 9
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = FILE_NAME
 DESCRIPTION = "Name of file in archive"
 DATA_TYPE = CHARACTER
 START_BYTE = 54
 BYTES = 12
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = PRODUCT_ID
 DESCRIPTION = "Original file name on MO PDB or SOPC"
 DATA_TYPE = CHARACTER
 START_BYTE = 69
 BYTES = 33
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = START_TIME
 DESCRIPTION = "Time at which data in the file begin given in the format

'YYYY-MM-DDThh:mm:ss'."
 DATA_TYPE = CHARACTER
 START_BYTE = 105
 BYTES = 19
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = STOP_TIME
 DESCRIPTION = "Time at which data in the file end given in the format

 'YYYY-MM-DDThh:mm:ss'."
 DATA_TYPE = CHARACTER
 START_BYTE = 127
 BYTES = 19
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = PRODUCT_CREATION_TIME
 DESCRIPTION = "Date and time that file was created."
 DATA_TYPE = CHARACTER
 START_BYTE = 149
 BYTES = 19
 END_OBJECT = COLUMN

 OBJECT = COLUMN
 NAME = FILE_SIZE
 DESCRIPTION = "Number of bytes in file, not including label."
 DATA_TYPE = "ASCII INTEGER"
 START_BYTE = 170
 BYTES = 9
 END_OBJECT = COLUMN

 END_OBJECT = INDEX_TABLE
 END

Appendix A. PDS Data Object Definitions A-67

A.22 PALETTE

The PALETTE object, a sub-class of the table object, contains entries which represent color
assignments for SAMPLE values contained in an IMAGE.

If the palette is stored in an external file from the data file, then the palette should be stored in
ASCII format as 256 ROWS, each composed of 4 COLUMNS. The first column contains the
SAMPLE value (0 to 255 for an 8-bit SAMPLE), and the remaining 3 COLUMNS contains the
relative amount (a value from 0 to 255) of each primary color to be assigned for that SAMPLE
value.

If the palette is stored in the data file, then it should be stored in BINARY format as 256
consecutive 8-bit values for each primary color (RED, GREEN, BLUE) resulting in a 768 byte
record.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS
3. ROW_BYTES
4. COLUMNS

Optional Keywords

1. DESCRIPTION
2. NAME

Required Objects

1. COLUMN

Optional Objects

None

Example

The examples below depict the differences between the two types of PALETTE objects. The first
is an example of an ASCII PALETTE object, and the second is an example of the BINARY
PALETTE object.

__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 80
FILE_RECORDS = 256

A-68 Appendix A. PDS Data Object Definitions

^PALETTE = "PALETTE.TAB"
 /* Image Palette description */
SPACECRAFT_NAME = MAGELLAN
MISSION_PHASE_NAME = PRIMARY_MISSION
TARGET_NAME = VENUS
PRODUCT_ID ="GEDR-MERC.1;2"
IMAGE_ID ="GEDR-MERC.1;2"
INSTRUMENT_NAME ="RADAR SYSTEM"
PRODUCT_CREATION_TIME = 1995-01-01T00:00:00
NOTE = "Palette for browse image"

/* Description of an ASCII PALETTE object */

OBJECT = PALETTE
INTERCHANGE_FORMAT = ASCII
ROWS = 256
ROW_BYTES = 80
COLUMNS = 4
OBJECT = COLUMN
NAME = SAMPLE
DESCRIPTION ="DN value for red, green, blue intensities"
DATA_TYPE = INTEGER
START_BYTE = 1
BYTES = 3
END_OBJECT
OBJECT = COLUMN
NAME = RED
DESCRIPTION = "Red intensity (0 - 255)"
DATA_TYPE = INTEGER
START_BYTE = 6
BYTES = 3
END_OBJECT
OBJECT = COLUMN
NAME = GREEN
DESCRIPTION = "Green intensity (0 - 255)"
DATA_TYPE = INTEGER
START_BYTE = 11
BYTES = 3
END_OBJECT
OBJECT = COLUMN
NAME = BLUE
DESCRIPTION = "Blue intensity (0 - 255)"
DATA_TYPE = INTEGER
START_BYTE = 16
BYTES = 3
END_OBJECT
END_OBJECT
END

--

/* Description of a BINARY PALETTE object */

OBJECT = PALETTE
INTERCHANGE_FORMAT = BINARY
ROWS = 1
ROW_BYTES = 768
COLUMNS = 3

Appendix A. PDS Data Object Definitions A-69

OBJECT = COLUMN
NAME = RED
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 1
ITEMS = 256
ITEM_BYTES = 1
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GREEN
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 257
ITEMS = 256
ITEM_BYTES = 1
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = BLUE
DATA_TYPE = UNSIGNED_INTEGER
START_BYTE = 513
ITEMS = 256
ITEM_BYTES = 1
END_OBJECT = COLUMN
END_OBJECT = PALETTE
END

A-70 Appendix A. PDS Data Object Definitions

A.23 QUBE

A generalized QUBE object is a multidimensional array (called the core) of sample values in
multiple dimensions. The core is homogeneous, and consists of unsigned byte, signed halfword or
floating point fullword elements. QUBEs of one to three dimensions may have optional suffix
areas in each axis. The suffix areas may be heterogeneous, with elements of different types, but
each suffix pixel is always allocated a fullword. Special values may be defined for the core and the
suffix areas to designate missing values and several kinds of invalid values, such as instrument and
representation saturation.

The QUBE is the principal data structure of the ISIS (Integrated Software for Imaging
Spectrometers) system. A frequently used specialization of the QUBE object is the ISIS Standard
Qube, which is a three-dimensional QUBE with two spatial dimensions and one spectral
dimension. Its axes have the interpretations 'sample', 'line' and 'band'. Three physical storage orders
are allowed: band-sequential, line_interleaved (band-interleaved-by-line) and sample_interleaved
(band-interleaved-by-pixel).

An example of a Standard ISIS Qube is a spectral image qube containing data from an imaging
spectrometer. Such a qube is simultaneously a set of images (at different wavelengths) of the same
target area, and a set of spectra at each point of the target area. Typically, suffix areas in such a
qube are confined to 'backplanes' containing geometric or quality information about individual
spectra, i.e. about the set of corresponding values at the same pixel location in each band.

The following diagram illustrates the general structure of a Standard ISIS Qube. Note that this is a
conceptual or “logical” view of the qube.

BOTTOMPLANE

BACKPLANE

SIDEPLANE

CORE

SPECTRAL
(BANDS)

SPATIAL
(LINES)

SPATIAL
(SAMPLES)

EXPLODED VIEW of a
QUBE OBJECT

CORE STRUCTURE

Figure A.3: Exploded View of a Qube Object

Appendix A. PDS Data Object Definitions A-71

Some special requirements are imposed by the ISIS system. A QUBE object must be associated
with a HISTORY object. (Other objects, such as HISTOGRAMs, IMAGEs, PALETTEs and
TABLEs which contain statistics, display parameters, engineering values or other ancillary data,
are optional.) A special element, FILE_STATE, is required in the implicit FILE object. Some label
information is organized into GROUPs, such as BAND_BIN and IMAGE_MAP_PROJECTION.
The BAND_BIN group contains essential wavelength information, and is required for Standard
ISIS Qubes.

The ISIS system includes routines for reading and writing files containing QUBE objects. Both
'logical' access, independent of actual storage order, and direct 'physical' access are provided for
Standard ISIS Qubes. Only physical access is provided for generalized QUBEs. Most ISIS
application programs operate on Standard ISIS Qubes. Arbitrary subqubes ('virtual' qubes) of
existing qubes may be specified for most of these programs. In addition, ISIS includes software for
handling Tables (an ISIS variant of the PDS Table object) and Instrument Spectral Libraries.

For a complete description, refer to the most recent version of 'ISD: ISIS System Design, Build 2',
obtainable from the PDS Operator.

NOTE: The following required and optional elements of the QUBE object are ISIS-specific. Since
the ISIS system was designed before the current version of the Planetary Science Data Dictionary,
some of the element names conflict with current PDS nomenclature standards.

Required Keywords (Generalized Qube and Standard ISIS Qube)

AXES Number of axes or dimensions of qube [integer]

AXIS_NAME Names of axes [sequence of 1-6 literals]
(BAND, LINE, SAMPLE) for Standard Qube

CORE_ITEMS Core dimensions of axes [seq of 1-6 integers]

CORE_ITEM_BYTES Core element size [integer bytes: {1, 2, 4}]

CORE_ITEM_TYPE Core element type
[literal: {UNSIGNED_INTEGER, INTEGER, REAL}]

CORE_BASE Base value of core item scaling [real]

CORE_MULTIPLIER Multiplier for core item scaling [real]
'true' value = base + multiplier * 'stored' value
(base = 0.0 and multiplier = 1.0 for REALs)

SUFFIX_BYTES Storage allocation of suffix elements [integer: always 4]

SUFFIX_ITEMS Suffix dimensions of axes [seq of 1-6 integers]

 CORE_VALID_MINIMUM Minimum valid core value -- values below this value are
reserved for 'special' values, of which 5 are currently assigned
[integer or non-decimal integer: these values are fixed by ISIS
convention for each allowable item type and size -- see ISD for

A-72 Appendix A. PDS Data Object Definitions

details]

CORE_NULL Special value indicating 'invalid' data

CORE_LOW_INSTR_SATURATION Special value indicating instrument saturation at the low end

CORE_HIGH_INSTR_SATURATION Special value indicating instrument saturation at the high end

CORE_LOW_REPR_SATURATION Special value indicating representation saturation at the low end

CORE_HIGH_REPR_SATURATION Special value indicating representation saturation at the high
end

Required Keywords (Standard ISIS Qube) and Optional Keywords (Generalized Qube)

 CORE_NAME Name of value stored in core of qube [literal, e.g.
SPECTRAL_RADIANCE]

CORE_UNIT Unit of value stored in core of qube [literal]

BAND_BIN_CENTER Wavelengths of bands in a Standard Qube [sequence of reals]

BAND_BIN_UNIT Unit of wavelength [literal, e.g. MICROMETER]

BAND_BIN_ORIGINAL_BAND Original band numbers, referring to a Qube of which the current
qube is a subqube. In the original qube, these are sequential
integers.[sequence of integers]

Optional Keywords (Generalized Qube and Standard ISIS Qube)
BAND_BIN_WIDTH Width (at half height) of spectral response of bands [sequence

of reals]

BAND_BIN_STANDARD_DEVIATION Standard deviation of spectrometer values at each band
[sequence of reals]

BAND_BIN_DETECTOR Instrument detector number of band, where relevant [sequence
of integers]

BAND_BIN_GRATING_POSITION Instrument grating position of band, where relevant [sequence
of integers]

Required Keywords (for each suffix present in a 1-3 dimensional qube).
Note: These must be prefixed by the specific AXIS_NAME. These are SAMPLE, LINE and
BAND for Standard ISIS Qubes. Only the commonly used BAND variants are shown:

BAND_SUFFIX_NAME Names of suffix items [sequence of literals]

BAND_SUFFIX_UNIT Units of suffix items [sequence of literals]

BAND_SUFFIX_ITEM_BYTES Suffix item sizes [sequence of integer bytes {1, 2, 4}]

BAND_SUFFIX_ITEM_TYPE Suffix item types [sequence of literals:

Appendix A. PDS Data Object Definitions A-73

{UNSIGNED_INTEGER, INTEGER, REAL, ...}]

BAND_SUFFIX_BASE Base values of suffix item scaling [sequence of reals] (see
corresponding core element)

BAND_SUFFIX_MULTIPLIER Multipliers for suffix item scaling [sequence of reals] (see
corresponding core element)

BAND_SUFFIX_VALID_MINIMUM Minimum valid suffix values

BAND_SUFFIX_NULL ...and assigned special values

BAND_SUFFIX_LOW_INSTR_SAT [sequences of integers or reals]

BAND_SUFFIX_HIGH_INSTR_SAT (see corresponding core

BAND_SUFFIX_LOW_REPR_SAT element definitions for

BAND_SUFFIX_HIGH_REPR_SAT details)

Example

The following label describes ISIS qube data from the Galileo NIMS experiment. The qube
contains 17 bands of NIMS fixed-map mode raw data numbers and 9 backplanes of ancillary
information. In other modes, NIMS can produce data qubes of 34, 102, 204 and 408 bands.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
/* File Structure */

CCSD. . .

^HISTORY =

END

QUBE

HISTORY

^QUBE LABEL

512 Record

24
25

47
48

.

.

.

.

.

.

1

.

.

.

9158

A-74 Appendix A. PDS Data Object Definitions

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 9158
LABEL_RECORDS = 24
FILE_STATE = CLEAN

^HISTORY = 25
OBJECT = HISTORY
END_OBJECT = HISTORY

^QUBE = 48
OBJECT = QUBE

/* Qube structure: Standard ISIS Cube of NIMS Data */

 AXES = 3
 AXIS_NAME = (SAMPLE,LINE,BAND)

/* Core description */

 CORE_ITEMS = (229,291,17)
 CORE_ITEM_BYTES = 2
 CORE_ITEM_TYPE = VAX_INTEGER
 CORE_BASE = 0.0
 CORE_MULTIPLIER = 1.0
 CORE_VALID_MINIMUM = -32752
 CORE_NULL = -32768
 CORE_LOW_REPR_SATURATION = -32767
 CORE_LOW_INSTR_SATURATION = -32766
 CORE_HIGH_INSTR_SATURATION = -32765
 CORE_HIGH_REPR_SATURATION = -32764
 CORE_NAME = RAW_DATA_NUMBER
 CORE_UNIT = DIMENSIONLESS

 PHOTOMETRIC_CORRECTION_TYPE = NONE

/* Suffix description */

 SUFFIX_BYTES = 4
 SUFFIX_ITEMS = (0,0,9)

 BAND_SUFFIX_NAME = (LATITUDE,LONGITUDE,INCIDENCE_ANGLE,
 EMISSION_ANGLE,PHASE_ANGLE,SLANT_DISTANCE,INTERCEPT_ALTITUDE,
 PHASE_ANGLE_STD_DEV,RAW_DATA_NUMBER_STD_DEV)
 BAND_SUFFIX_UNIT = (DEGREE,DEGREE,DEGREE,DEGREE,DEGREE,KILOMETER,
 KILOMETER,DEGREE,DIMENSIONLESS)
 BAND_SUFFIX_ITEM_BYTES = (4,4,4,4,4,4,4,4,4)
 BAND_SUFFIX_ITEM_TYPE = (VAX_REAL,VAX_REAL,VAX_REAL,VAX_REAL,VAX_REAL,
 VAX_REAL,VAX_REAL,VAX_REAL,VAX_REAL)
 BAND_SUFFIX_BASE = (0.000000,0.000000,0.000000,0.000000,0.000000,
 0.000000,0.000000,0.000000,0.000000)
 BAND_SUFFIX_MULTIPLIER = (1.000000,1.000000,1.000000,1.000000,1.000000,
 1.000000,1.000000,1.000000,1.000000)
 BAND_SUFFIX_VALID_MINIMUM = (16#FFEFFFFF#,16#FFEFFFFF#,16#FFEFFFFF#,
 16#FFEFFFFF#,16#FFEFFFFF#,16#FFEFFFFF#,16#FFEFFFFF#,16#FFEFFFFF#,
 16#FFEFFFFF#)
 BAND_SUFFIX_NULL = (16#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#,
 16#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#)

Appendix A. PDS Data Object Definitions A-75

 BAND_SUFFIX_LOW_REPR_SAT = (16#FFFEFFFF#,16#FFFEFFFF#,16#FFFEFFFF#,
 16#FFFEFFFF#,16#FFFEFFFF#,16#FFFEFFFF#,16#FFFEFFFF#,16#FFFEFFFF#,
 16#FFFEFFFF#)
 BAND_SUFFIX_LOW_INSTR_SAT = (16#FFFDFFFF#,16#FFFDFFFF#,16#FFFDFFFF#,
 16#FFFDFFFF#,16#FFFDFFFF#,16#FFFDFFFF#,16#FFFDFFFF#,16#FFFDFFFF#,
 16#FFFDFFFF#)
 BAND_SUFFIX_HIGH_INSTR_SAT = (16#FFFCFFFF#,16#FFFCFFFF#,16#FFFCFFFF#,
 16#FFFCFFFF#,16#FFFCFFFF#,16#FFFCFFFF#,16#FFFCFFFF#,16#FFFCFFFF#,
 16#FFFCFFFF#)
 BAND_SUFFIX_HIGH_REPR_SAT = (16#FFFBFFFF#,16#FFFBFFFF#,16#FFFBFFFF#,
 16#FFFBFFFF#,16#FFFBFFFF#,16#FFFBFFFF#,16#FFFBFFFF#,16#FFFBFFFF#,
 16#FFFBFFFF#)
 BAND_SUFFIX_NOTE = "
The backplanes contain 7 geometric parameters, the standard deviation of one of them, the standard deviation of a selected data
band, and 0 to 10 'spectral index' bands, each a user-specified function of the data bands. (See the BAND_SUFFIX_NAME
values.)

 Longitude ranges from 0 to 360 degrees, with positive direction specified by POSITIVE_LONGITUDE_DIRECTION in the
IMAGE_MAP_PROJECTION group.

 INTERCEPT_ALTITUDE contains values for the DIFFERENCE between the length of the normal from the center of the target
body to the line of sight AND the radius of the target body. On-target points have zero values. Points beyond the maximum
expanded radius have null values. This plane thus also serves as a set of 'off-limb' flags. It is meaningful only for the
ORTHOGRAPHIC and POINT_PERSPECTIVE projections; otherwise all values are zero. The geometric standard deviation
backplane contains the standard deviation of the geometry backplane indicated in its NAME, except that the special value
16#FFF9FFFF# replaces the standard deviation where the corresponding core pixels have been 'filled'.

The data band standard deviation plane is computed for the NIMS data band specified by
STD_DEV_SELECTED_BAND_NUMBER. This may be either a raw data number, or spectral radiance, whichever is indicated
by CORE_NAME.

The (optional) spectral index bands were generated by the Vicar F2 program. The corresponding BAND_SUFFIX_NAME is an
abbreviated formula for the function used, where Bn should be read 'NIMS data band n'. For example: B4/B8 represents the ratio
of bands 4 and 8."

STD_DEV_SELECTED_BAND_NUMBER = 9

/* Data description: general */

DATA_SET_ID = "GO-V-NIMS-4-MOSAIC-V1.0"
PRODUCT_ID = "XYZ"
SPACECRAFT_NAME = GALILEO_ORBITER
MISSION_PHASE_NAME = VENUS_ENCOUNTER
INSTRUMENT_NAME = NEAR_INFRARED_MAPPING_SPECTROMETER
INSTRUMENT_ID = NIMS
^INSTRUMENT_DESCRIPTION = "NIMSINST.TXT"

TARGET_NAME = VENUS
START_TIME = 1990-02-10T01:49:58Z
STOP_TIME = 1990-02-10T02:31:52Z
NATIVE_START_TIME = 180425.85
NATIVE_STOP_TIME = 180467.34
OBSERVATION_NAME = 'VPDIN1'
OBSERVATION_NOTE = "VPDIN1 / Footprint, Limbfit, Height=50"

INCIDENCE_ANGLE = 160.48
EMISSION_ANGLE = 14.01
PHASE_ANGLE = 147.39
SUB_SOLAR_AZIMUTH = -174.74

A-76 Appendix A. PDS Data Object Definitions

SUB_SPACECRAFT_AZIMUTH = -0.80
MINIMUM_SLANT_DISTANCE = 85684.10
MAXIMUM_SLANT_DISTANCE = 103175.00
MIN_SPACECRAFT_SOLAR_DISTANCE = 1.076102e+08
MAX_SPACECRAFT_SOLAR_DISTANCE = 1.076250e+08

/* Data description: instrument status */

INSTRUMENT_MODE_ID = FIXED_MAP
GAIN_MODE_ID = 2
CHOPPER_MODE_ID = REFERENCE
START_GRATING_POSITION = 16
OFFSET_GRATING_POSITION = 04

MEAN_FOCAL_PLANE_TEMPERATURE = 85.569702
MEAN_RAD_SHIELD_TEMPERATURE = 123.636002
MEAN_TELESCOPE_TEMPERATURE = 139.604996
MEAN_GRATING_TEMPERATURE = 142.580002
MEAN_CHOPPER_TEMPERATURE = 142.449997
MEAN_ELECTRONICS_TEMPERATURE = 287.049988

GROUP = BAND_BIN

/* Spectral axis description */

BAND_BIN_CENTER = (0.798777,0.937873,1.179840,1.458040,1.736630,
 2.017250,2.298800,2.579060,2.864540,3.144230,3.427810,3.710640,
 3.993880,4.277290,4.561400,4.843560,5.126080)
BAND_BIN_UNIT = MICROMETER
BAND_BIN_ORIGINAL_BAND = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17)
BAND_BIN_GRATING_POSITION = (16,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,16,16)
BAND_BIN_DETECTOR = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)
END_GROUP = BAND_BIN

GROUP = IMAGE_MAP_PROJECTION
/* Projection description */
MAP_PROJECTION_TYPE = OBLIQUE_ORTHOGRAPHIC
MAP_SCALE = 45.000
MAP_RESOLUTION = 2.366
CENTER_LATITUDE = 12.00
CENTER_LONGITUDE = 350.00
LINE_PROJECTION_OFFSET = 149.10
SAMPLE_PROJECTION_OFFSET = 85.10
MINIMUM_LATITUDE = 11.71
MAXIMUM_LATITUDE = 13.62
MINIMUM_LONGITUDE = 349.62
MAXIMUM_LONGITUDE = 351.72
POSITIVE_LONGITUDE_DIRECTION = EAST
A_AXIS_RADIUS = 6101.000000
B_AXIS_RADIUS = 6101.000000
C_AXIS_RADIUS = 6101.000000
REFERENCE_LATITUDE = 0.000000
REFERENCE_LONGITUDE = 0.000000
MAP_PROJECTION_ROTATION = 0.00
LINE_FIRST_PIXEL = 1
LINE_LAST_PIXEL = 229
SAMPLE_FIRST_PIXEL = 1

Appendix A. PDS Data Object Definitions A-77

SAMPLE_LAST_PIXEL = 291
END_GROUP = IMAGE_MAP_PROJECTION

END_OBJECT = QUBE
END

A-78 Appendix A. PDS Data Object Definitions

A.24 SERIES

The SERIES object is a sub-class of the TABLE object. It is used for storing a sequence of
measurements organized in a specific way (e.g. ascending time, radial distances). The current
version uses the same physical format specification as the TABLE object, but includes sampling
parameter information that describes the variation between elements in the series.

The sampling parameter keywords are required for the SERIES object and may be optional for one
or more COLUMN sub-objects, depending on the data organization.

The sampling parameter keywords in the SERIES object represent the variation between the
ROWS of data. For data that vary regularly between each row, the
SAMPLING_PARAMETER_INTERVAL keyword defines this regularity. For data in which
rows are irregularly spaced, the SAMPLING_PARAMETER_INTERVAL keyword is “N/A”, and
the actual sampling parameter values are included in the data itself and identified as a column in
the series. An example of this is a file of time series data with rows ordered by a time column (or
set of columns).

For data that vary regularly between items of a single column, sampling parameter keywords
appear as part of the COLUMN sub-object. Data sampled at irregular intervals described as
separate columns may also provide sampling parameter information specific to each column.

Optional MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be added whenever possible to
indicate the range in which the data was sampled. For data sampled at a single point rather than
over a range, both the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER are set to the specific value. For TIME_SERIES data,
where the sampling parameter specified is time, these keywords are not used.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS
3. COLUMNS
4. ROW_BYTES
5. SAMPLING_PARAMETER_NAME
6. SAMPLING_PARAMETER_UNIT
7. SAMPLING_PARAMETER_INTERVAL

Optional Keywords

1. NAME
2. ROW_PREFIX_BYTES
3. ROW_SUFFIX_BYTES
4. MINIMUM_SAMPLING_PARAMETER
5. MAXIMUM_SAMPLING_PARAMETER

Appendix A. PDS Data Object Definitions A-79

6. DERIVED_MINIMUM
7. DERIVED_MAXIMUM
8. DESCRIPTION

Required Objects

1. COLUMN

Optional Objects

1. CONTAINER

Example

This example illustrates the use of the SERIES object for data that vary regularly in two ways.
Rows of data in the SERIES occur at 60 millisecond intervals while the COLUMN occurs at
.03472222 millisecond intervals.
__

ENGINEERING_TABLE

Rec

243-byte Eng rec Spare

1600 8-bit waveform samples

.03472222 ms between samples

.

. . .

1

2

801

60 ms
between

rows

bytes 1-220 bytes 221-1820

ROW_PREFIX
_TABLE

TIME_SERIES

}

}

A-80 Appendix A. PDS Data Object Definitions

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1820
FILE_RECORDS = 801
^ENGINEERING_TABLE = ("C0900313.DAT", 1)
^ROW_PREFIX_TABLE = ("C0900313.DAT", 2)
^TIME_SERIES = ("C0900313.DAT", 2)
/* Observation description */
DATA_SET_ID = "VG2-N-PWS-2-EDR-WFRM-60MS-V1.0"
PRODUCT_ID = "C0900313.DAT"
PRODUCT_CREATION_TIME = "UNK"
SPACECRAFT_NAME = VOYAGER_2
SPACECRAFT_CLOCK_START_COUNT = "09003.13.002"
SPACECRAFT_CLOCK_STOP_COUNT = "09003.13.002"
EARTH_RECEIVED_TIME = 1989-159T13:35:00.121Z
START_TIME = 1989-157T14:16:56.979Z
STOP_TIME = "N/A"
MISSION_PHASE_NAME = NEPTUNE_ENCOUNTER
TARGET_NAME = NEPTUNE
/* Instrument description */
INSTRUMENT_NAME = PLASMA_WAVE_RECEIVER
INSTRUMENT_ID = PWS
SECTION_ID = WFRM
/* Object descriptions */
OBJECT = ENGINEERING_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 1
COLUMNS = 106
ROW_BYTES = 243
ROW_SUFFIX_BYTES =1577
DESCRIPTION = "This table describes the format of the engineering record which is included as
the first record in each PWS high rate waveform file. This record contains the first 242 bytes of data extracted from the Mission
and Test Imaging System (MTIS) header record on each file of an imaging EDR tape. A 243rd byte containing some flag fields has
been added to the table for all data collected during the Neptune encounter."
 ^STRUCTURE = "ENGTAB.FMT"
END_OBJECT = ENGINEERING_TABLE

OBJECT = ROW_PREFIX_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 800
COLUMNS = 47
ROW_BYTES = 220
ROW_SUFFIX_BYTES = 1600
DESCRIPTION = "This table describes the format of the engineering data associated with the
collection of each row of waveform data (1600 waveform samples)."
^STRUCTURE = "ROWPRX.FMT"
END_OBJECT = ROW_PREFIX_TABLE

OBJECT = TIME_SERIES
NAME = WAVEFORM_FRAME
INTERCHANGE_FORMAT = BINARY
ROWS = 799
COLUMNS = 1
ROW_BYTES = 1600
ROW_PREFIX_BYTES = 220
SAMPLING_PARAMETER_NAME = TIME

Appendix A. PDS Data Object Definitions A-81

SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = .06 /* 60 MS between rows */
DESCRIPTION = "This time_series consists of up to 800 records (or rows, lines) of PWS
waveform sample data. Each record 2-801 of the file (or frame) contains 1600 waveform samples, prefaced by 220 bytes of MTIS
information. The 1600 samples are collected in 55.56 msec followed by a 4.44 msec gap. Each 60 msec interval constitutes a line
of waveform samples. Each file contains up to 800 lines of waveform samples for a 48 sec frame."

OBJECT = COLUMN
NAME = WAVEFORM_SAMPLES
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 221
BYTES = 1600
ITEMS = 1600
ITEM_BYTES = 1
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL = 0.00003472222 /* time between samples */

OFFSET = -7.5
VALID_MINIMUM = 0
VALID_MAXIMUM = 15
DESCRIPTION = "The 1 byte waveform samples constitute an array of waveform measurements
which are encoded into binary values from 0 to 15 and may be re-mapped to reduce the artificial zero-frequency component. For
example, stored values can be mapped to the following floating point values. The original 4-bit data samples have been repackaged
into 8-bit (1 byte) items without modification for archival purposes.\n

0 = -7.5 1 = -6.5 2 = -5.5 3 = -4.5

4 = -3.5 5 = -2.5 6 = -1.5 7 = -0.5

8 =0.5 9 =1.5 10=2.5 11 =3.5

12 =4.5 13 =5.5 14 =6.5 15 =7.5

 "
END_OBJECT = COLUMN
END_OBJECT = TIME_SERIES

END

A-82 Appendix A. PDS Data Object Definitions

A.25 SPECTRUM

The SPECTRUM object is a form of TABLE used for storing spectral measurements. The
SPECTRUM object is assumed to have a number of measurements of the observation target taken
in different SPECTRAL bands. The SPECTRUM object uses the same physical format
specification as the TABLE object, but includes a SAMPLING PARAMETER definition which
indicates the spectral region measured in successive COLUMNs or ROWs. The common sampling
parameters for SPECTRUM objects are wavelength, frequency, or velocity.

A regularly sampled SPECTRUM can be stored either horizontally as a 1 row table with 1 column
containing n samples (expressed as ITEMS=n), or vertically as a 1 column table with n rows where
each ROW contains a sample of the spectrum. The vertical format allows additional columns to be
defined for related parameters for each sample value (e.g. ERROR factors). These related columns
can be described in a separate PREFIX or SUFFIX table.

An irregularly sampled SPECTRUM must be stored horizontally, with each specific spectral range
identified as a separate column, and defined by a specific set of sampling parameter keywords for
each column.

In the horizontal format, the sampling parameter specifications are included in the COLUMN
definition. For a vertically defined SPECTRUM, the sampling parameter information is provided
in the SPECTRUM object, since it is describing the spectral variation between the ROWs of the
data.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS
3. COLUMNS
4. ROW_BYTES

Optional Keywords

1. NAME
2. SAMPLING_PARAMETER_NAME
3. SAMPLING_PARAMETER_UNIT
4. SAMPLING_PARAMETER_INTERVAL
5. ROW_PREFIX_BYTES
6. ROW_SUFFIX_BYTES
7. MINIMUM_SAMPLING_PARAMETER
8. MAXIMUM_SAMPLING_PARAMETER
9. DERIVED_MINIMUM
10. DERIVED_MAXIMUM
11. DESCRIPTION

Appendix A. PDS Data Object Definitions A-83

Required Objects

1. COLUMN

Optional Objects

1. CONTAINER

Example
This example illustrates a SPECTRUM data object stored in a vertical format. The data are
regularly sampled at intervals of 99.09618 meters/second and data samples are stored in successive
ROWS.

CCSD3ZF0000100000001NJPL3IFOPDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 2
FILE_RECORDS = 256
PRODUCT_ID = "RSSL007.DAT"
DATA_SET_ID = "IHW-C-RSSL-3-EDR-HALLEY-V1.0"
TARGET_NAME = "HALLEY"
INSTRUMENT_HOST_NAME = "IHW RADIO STUDIES NETWORK"
INSTRUMENT_NAME = "RADIO SPECTRAL LINE DATA"
OBSERVATION_ID = "621270"
START_TIME = 1985-11-10T00:43:12.000
STOP_TIME = 1985-11-10T00:43:12.000
PRODUCT_CREATION_TIME = "UNK"
/* Record Pointer to Major Object */
^TOTAL_INTENSITY_SPECTRUM = "RSSL0007.DAT"
/* Object Description */

OBJECT = SPECTRUM
INTERCHANGE_FORMAT = BINARY
ROWS = 256
ROW_BYTES = 2
COLUMNS = 1
SAMPLING_PARAMETER_NAME = "VELO_COM"

row

1

2

. . .

256

2 bytes

.

-258111.21 M/S

-254599.47 M/S

A-84 Appendix A. PDS Data Object Definitions

MINIMUM_SAMPLING_PARAMETER = -1.268431E+04
SAMPLING_PARAMETER_INTERVAL = 9.909618E+01
SAMPLING_PARAMETER_UNIT = "METERS/SECOND"
DESCRIPTION = "Radio Studies; Spectral Line intensity spectrum. Spectrum is organized as 1
column with 256 rows. Each row contains a spectral value for the velocity derived from the sampling parameter information
associated with each row."

OBJECT = COLUMN
NAME = FLUX_DENSITY
DATA_TYPE = MSB_INTEGER
START_BYTE = 1
BYTES = 2
SCALING_FACTOR = 7.251200E-04
OFFSET = 0.000000E+01
DERIVED_MINIMUM = 2.380000E+01
DERIVED_MAXIMUM = 3.490000E+01
END_OBJECT = COLUMN
END_OBJECT = SPECTRUM

END

Appendix A. PDS Data Object Definitions A-85

A.26 SPICE KERNEL

The SPICE_KERNEL object defines a single kernel (file) from a collection of SPICE Kernels.
SPICE kernels provide ancillary data needed to support the planning and subsequent analysis of
space science observations.

The SPICE system includes the software and documentation required to read the SPICE Kernels
and use the data contained therein to help plan observations or interpret space science data. This
software and associated documentation are collectively called the NAIF Toolkit.

Kernel files are the major components of the SPICE system. The EPHEMERIS KERNEL_TYPE
(SPK) contains spacecraft and planet, satellite or other target body ephemeris data that provide
position and velocity of a spacecraft as a function of time. The TARGET_CONSTANTS
KERNEL_TYPE (PCK) contains planet, satellite, comet, or asteroid cartographic constants for
that object. The INSTRUMENT KERNEL_TYPE (IK) contains a collection of science instrument
information, including specification of the mounting alignment, internal timing, and other
information needed to interpret measurements made with the instrument. The POINTING
KERNEL_TYPE (CK) contains pointing data (e.g., the inertially referenced attitude for a
spacecraft structure upon which instruments are mounted, given as a function of time). The
EVENTS KERNEL_TYPE (EK) contains event information (e.g, spacecraft and instrument
commands, ground data system event logs, and experimenter's notebook comments). The
LEAPSECONDS KERNEL_TYPE (LSK) contains an account of the leapseconds needed to
correlate civil time (UTC or GMT) with ephemeris time (TDB). This is the measure of time used
in the SP kernel files. The Spacecraft Clock coefficients kernel (SCLK) contains the data needed
to correlate a spacecraft clock with ephemeris time.

Data products referencing a particular SPICE kernel would do so through the
SOURCE_PRODUCT_ID keyword in their label with the value corresponding to that of the
PRODUCT_ID within the SPICE_KERNEL label. The PRODUCT_ID keyword is unique to a
data product.

Required Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. KERNEL_TYPE

Optional Keywords

None

Required Objects

None

A-86 Appendix A. PDS Data Object Definitions

Optional Objects

None

Example

NOTE: The following example of a SPICE CK (Pointing) Kernel attached label may have been
modified to reflect current PDS standards and is not intended to contain actual PDS ingested
values. You will notice that some label information is actually inside the Kernel file which allows
NAIF tools to extract information to produce the PDS label.
__

CCSD...
PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM
MISSION_NAME = MARS_OBSERVER
SPACECRAFT_NAME = MARS_OBSERVER
DATA_SET_ID = “MO-M-SPICE-6-CK-V1.0”
FILE_NAME = "NAF0000D.TC"
PRODUCT_ID = "NAF0000D-CK"
PRODUCT_CREATION_TIME = 1992-04-14T12:00:00
PRODUCER_ID = "NAIF"
MISSION_PHASE_TYPE = "ORBIT"
PRODUCT_VERSION_TYPE = "TEST"
START_TIME = 1994-01-06T00:00:00
STOP_TIME = 1994-02-04T23:55:00
SPACECRAFT_CLOCK_START_COUNT = "3/76681108.213"
SPACECRAFT_CLOCK_STOP_COUNT = "4/79373491.118"
TARGET_NAME = MARS
INSTRUMENT_NAME = "MARS OBSERVER SPACECRAFT"
INSTRUMENT_ID = MO
SOURCE_PRODUCT_ID =
{"NAF0000C.BSP","NAF0000C.TLS","NAF0000C.TSC"}
NOTE = "BASED ON EPHEMERIS IN NAF0000C.BSP. FOR SOFTWARE
TESTING ONLY."
OBJECT = SPICE_KERNEL
INTERCHANGE_FORMAT = ASCII
KERNEL_TYPE = POINTING
DESCRIPTION = "This is a SPICE kernel file, designed to be accessed using NAIF Toolkit
software. Contact your flight project representative or the NAIF node of the Planetary Data System if you wish to obtain a copy of
the NAIF Toolkit. The Toolkit consists of portable FORTRAN 77 code and extensive user documentation."
END_OBJECT = SPICE_KERNEL
END
CCSD...

INTERNAL SPICE LABEL
SPICE DATA

Appendix A. PDS Data Object Definitions A-87

A.27 TABLE

TABLEs are the natural storage format for collections of data from many instruments. They are
also the most effective way of storing much of the meta-data which are used to identify and
describe instrument observations.

The TABLE object is a uniform collection of rows containing ASCII or binary values stored in
columns. The ROWS and COLUMNS of the TABLE object provide a natural correspondence to
the records and fields often defined in interface specifications for existing data products. The value
to use for the COLUMNS keyword in a TABLE object should be the actual number of COLUMN
objects defined in the label. The INTERCHANGE_FORMAT keyword is used to distinguish
between ASCII and binary table values.

ASCII vs. BINARY formats

ASCII tables provide the most portable format for access across a wide variety of computer
platforms. They are also easily imported into a number of database management systems and
spreadsheet applications. For these reasons, the PDS recommends the use of ASCII table formats
whenever possible for archive products.

ASCII formats are generally less efficient for storing large quantities of data. In addition, raw or
minimally processed data products and many pre-existing data products undergoing restoration are
only available in binary formats.Where conversion to an ASCII format is neither cost effective nor
desirable, BINARY table formats can be used.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS
3. COLUMNS
4. ROW_BYTES

Optional Keywords

1. NAME
2. DESCRIPTION
3. ROW_PREFIX_BYTES
4. ROW_SUFFIX_BYTES
5. TABLE_STORAGE_TYPE

Required Objects

1. COLUMN

A-88 Appendix A. PDS Data Object Definitions

Optional Objects

1. CONTAINER

Many variations of the TABLE object are possible with the addition of the “optional” keywords
and/or objects to the basic TABLE definition. While PDS supports these options, they are often not
the best choices for archival data products. Recommended ASCII and binary table formats are
provided in the following sections (A.27.1, A.27.2) with examples. Section A.27.3 provides
examples of several TABLE variations and their possible application. Section A.27.4 provides
specific guidelines for SPARE columns or unused fields within a TABLE.

A.27.1 Recommended ASCII TABLE Format

The recommended PDS table format uses ASCII COLUMN values, with a fixed size for each
COLUMN. Each RECORD within the table is the same length and is terminated with a carriage-
return/line-feed <CR><LF> pair. COLUMNs are separated by commas and character fields are
enclosed in QUOTATION MARKS ("). The QUOTATION MARKs should surround the
maximum COLUMN width. For example, a twelve character COLUMN called
SPACECRAFT_NAME would be represented in the table as:

 "VOYAGER 1 ", instead of "VOYAGER 1"

Numeric fields are right-justified in the allotted space and character fields are left-justified and
blank padded on the right. This table format can be imported into many data management systems
such as DBASE, FoxBase, Paradox, and Britton-Lee and into EXCEL spreadsheets.

The following label subset and illustration provide the general characteristics of a PDS
recommended ASCII table with 1000 byte records:

 RECORD_TYPE = FIXED_LENGTH
 RECORD_BYTES = 1000
 ...
 OBJECT = TABLE
 INTERCHANGE_FORMAT = ASCII
 ROW_BYTES = 1000
 ...
 END_OBJECT = TABLE

CR LF
CR LF

Row 1
Row 2

.

.

.
Row n CR LF

1000 Record

1
2
.
.
.
n

Appendix A. PDS Data Object Definitions A-89

Example - Recommended ASCII TABLE

The following example is an ASCII index table with fixed length 71 byte records. Note that for
ASCII tables, the delimiters (i.e., double quotes, commas, and line terminators <CR><LF>) are
included in the byte count for each record (RECORD_BYTES). In this example, the delimiters are
also included in the byte count for each row (ROW_BYTES). The <CR><LF> characters have
been placed in columns 70 and 71.

Contents of file "INDEX.TAB"
--
"F-MIDR ","F-MIDR.40N286;1 ","C", 42, 37,289,282,"F40N286/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.20N280;1 ","C", 22, 17,283,277,"F20N280/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.20N286;1 ","C", 22, 17,289,283,"F20N286/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.00N279;1 ","R", 2, -2,281,275,"F00N279/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.05N290;1 ","C", 7, 2,292,286,"F05N290/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.05S279;1 ","R", -2, -7,281,275,"F05S279/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.10S284;1 ","C", -7,-12,287,281,"F10S284/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.10S290;1 ","R", -7,-12,292,286,"F10S290/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.15S283;1 ","R",-12,-17,286,279,"F15S283/FRAME.LBL "<CR><LF>
"F-MIDR ","F-MIDR.15S289;1 ","R",-12,-17,291,285,"F15S289/FRAME.LBL "<CR><LF>

Contents of file "INDEX.LBL"
--
CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 71
FILE_RECORDS = 10
^INDEX_TABLE = "INDEX.TAB"

DATA_SET_ID = "MGN-V-RDRS-5-MIDR-FULL-RES-V1.0"
VOLUME_ID = MG_7777
PRODUCT_ID = "FMIDR.XYZ"
SPACECRAFT_NAME = MAGELLAN
INSTRUMENT_NAME = "RADAR SYSTEM"
TARGET_NAME = VENUS
PRODUCT_CREATION_TIME = "N/A"
MISSION_PHASE_NAME = PRIMARY_MISSION
NOTE = "This table lists all MIDRs on this volume. It also includes the latitude and
longitude range for each MIDR and the directory in which it is found."

OBJECT = INDEX_TABLE
INTERCHANGE_FORMAT = ASCII
ROWS = 10
COLUMNS = 8
ROW_BYTES = 71
INDEX_TYPE = SINGLE

OBJECT = COLUMN
NAME = PRODUCT_TYPE
DESCRIPTION = "Magellan DMAT type code. Possible values are F-MIDR, C1-MIDR, C2-

MIDR, C3-MIDR, and P-MIDR."
DATA_TYPE = CHARACTER

A-90 Appendix A. PDS Data Object Definitions

START_BYTE = 2
BYTES = 7
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PRODUCT_ID
DESCRIPTION = "Magellan DMAT name of product.

Example: F-MIDR.20N334;1"
DATA_TYPE = CHARACTER
START_BYTE = 12
BYTES = 16
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SEAM_CORRECTION_TYPE
DESCRIPTION = "A value of C indicates that cross- track seam correction has been applied. A
value of R indicates that the correction has not been applied."
DATA_TYPE = CHARACTER
START_BYTE = 31
BYTES = 1
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAXIMUM_LATITUDE
DESCRIPTION = "Northernmost frame latitude rounded to the nearest degree."
DATA_TYPE = INTEGER
UNIT = DEGREE
START_BYTE = 34
BYTES = 3
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINIMUM_LATITUDE
DESCRIPTION = "Southernmost frame latitude rounded to the nearest degree."
DATA_TYPE = INTEGER
UNIT = DEGREE
START_BYTE = 38
BYTES = 3
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = EASTERNMOST_LONGITUDE
DESCRIPTION = "Easternmost frame longitude rounded to the nearest degree."
DATA_TYPE = INTEGER
UNIT = DEGREE
START_BYTE = 42
BYTES = 3
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = WESTERNMOST_LONGITUDE
DESCRIPTION = "Westernmost frame longitude rounded to the nearest degree."
DATA_TYPE = INTEGER
UNIT = DEGREE
START_BYTE = 46
BYTES = 3
END_OBJECT = COLUMN

OBJECT = COLUMN

Appendix A. PDS Data Object Definitions A-91

NAME = FILE_SPECIFICATION_NAME
DESCRIPTION = "Path and file name of frame table relative to CD-ROM root directory."
DATA_TYPE = CHARACTER
START_BYTE = 51
BYTES = 18
END_OBJECT = COLUMN

END_OBJECT = INDEX_TABLE
END

A.27.2 Recommended BINARY TABLE Format

The recommended PDS binary table format uses FIXED_LENGTH records, with each row of the
table occupying a complete physical record (i.e. RECORD_BYTES = ROW_BYTES). This
recommended format also discourages the use of BIT_COLUMN objects within COLUMNS in
binary tables, primarily for portability reasons. Whenever possible, bit fields should be unpacked
into more portable byte oriented COLUMNS. Unused bytes embedded within the binary table
should be explicitly identified with COLUMNs named “SPARE” for completeness and to facilitate
automated validation of these table structures.

The following label subset and illustration provide the general characteristics of a PDS
recommended binary table with 1000 byte records:

RECORD_TYPE = FIXED_LENGTH
 RECORD_BYTES = 1000
 ...
 OBJECT = TABLE
 INTERCHANGE_FORMAT = BINARY
 ROW_BYTES = 1000
 ...
 END_OBJECT = TABLE

Example - Recommended Binary TABLE

The following is an example of a binary table consisting of 3 columns of data. The first two
columns provide TIME information in both the PDS standard UTC format and an alternate format.
The third column provides uncalibrated instrument measurements for the given times. This table
could also be represented as a TIME_SERIES by the addition of sampling parameter keywords to
describe the variation between each row of the table. The following illustration shows the layout
and contents of the binary table in file "T890825.DAT". The detached label file, "T890825.LBL"
provides the complete description.

Row 1
Row 2

.

.

.
Row n

1000 Record

1
2
.
.
.

n

A-92 Appendix A. PDS Data Object Definitions

Contents of file "T890825.DAT":

Contents of file "T890825.LBL":

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3

/* File Characteristic Keywords */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 36
FILE_RECORDS = 350
HARDWARE_MODEL_ID = "SUN SPARC STATION"
OPERATING_SYSTEM_ID = "SUN OS 4.1.1"

/* Data Object Pointers */
^TABLE = "T890825.DAT"

/* Identification Keywords */
DATA_SET_ID = "VG2-N-CRS-4-SUMM-D1-96SEC-V1.0"
SPACECRAFT_NAME = "VOYAGER 2"
INSTRUMENT_NAME = "COSMIC RAY SYSTEM"
TARGET_NAME = NEPTUNE
START_TIME = 1989-08-25T00:00:00.000Z
STOP_TIME = 1989-08-25T09:58:02.000Z
MISSION_PHASE_NAME = "NEPTUNE ENCOUNTER"
PRODUCT_ID = "T890825.DAT"
PRODUCT_CREATION_TIME = "UNK"
SPACECRAFT_CLOCK_START_COUNT = "UNK"
SPACECRAFT_CLOCK_STOP_COUNT = "UNK"

/* Data Object Descriptions */
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 350
COLUMNS = 3
ROW_BYTES = 36
^STRUCTURE = "CRSDATA.FMT"
END_OBJECT = TABLE
END

Row 1

Row 350

C TIME PDS TIME D1
RATE

byte 1 8 9

.

.

.

.

.

.

Record

1

32

.

.

.

350

33 36

Appendix A. PDS Data Object Definitions A-93

Contents of file "CRSDATA.FMT":

OBJECT = COLUMN
NAME = "C TIME"
UNIT = "SECONDS"
DATA_TYPE = REAL
START_BYTE = 1
BYTES = 8
MISSING = 1.0E+32
DESCRIPTION = "
Time column. This field contains time in seconds after Jan 01, 1966 but is displayed in the default time format selected by the user."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = "PDS TIME"
UNIT = "TIME"
DATA_TYPE = CHARACTER
 START_BYTE = 9
BYTES = 24
DESCRIPTION = "
Date/Time string of the form yyyy-mm-ddThh:mm:ss.sss such that the representation of the date Jan 01, 2000 00:00:00.000 would
be 2000-01-01T00:00:00.000Z (Z indicates Universal Time)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = "D1 RATE"
UNIT = "COUNTS"
DATA_TYPE = "REAL"
START_BYTE = 33
BYTES = 4
MISSING = 1.0E+32
DESCRIPTION = "
The D1 rate is approximately porportional to the omnidirectional flux of electrons with kinetic energy > ~1MeV. To obtain greater
accuracy, the D1 calibration tables (see catalog) should be applied."
END_OBJECT = COLUMN

A.27.3 TABLE Variations

This section addresses a number of structural variations of “table based” data objects. As the
structure of SERIES and SPECTRUM objects are similar and can be identical to the TABLE
object, all three objects (TABLE, SERIES, and SPECTRUM) can be of the following structure
types. The structural variations presented here are primarily due to the physical placement of the
data (ROW_BYTES) in relation to the size of the data record (RECORD_BYTES), the type of the
data (ASCII or BINARY), and the format of the data (FIXED_LENGTH or STREAM).

This section is not intended to be a complete reference for TABLE variations. Within the following
examples, some illustrate a recommended data modelling approach, some illustrate alternate
approaches, and other examples are included solely to document their existence.

Note: The examples in the following sections use OBJECT = TABLE, but OBJECT = SERIES or
OBJECT = SPECTRUM could be substituted.

A-94 Appendix A. PDS Data Object Definitions

A.27.3.1 Record blocking in Fixed Length TABLES

The PDS recommended TABLE format requires the ROW_BYTES of the TABLE object to be
equal to RECORD_BYTES of the file. This is not always the case, particularly when describing
existing binary TABLE formats.

A common use of blocking occurs when two or more data objects are packaged into the same file,
each requiring a different size record. In addition, rows in a TABLE are sometimes blocked into
larger physical records to minimize input/output operations.

Rows in both ASCII or binary tables can be either larger or smaller than the physical record size
specified by the RECORD_BYTES keyword.

Example - Binary Table with ROW_BYTES > RECORD_BYTES
__

The following label subset and illustration provide the general characteristics of a product
containing an 800 byte IMAGE object together with a TABLE with 1200 byte rows:

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 800
^TABLE =("IMAGE.IMG",1)
^IMAGE =("IMAGE.IMG",7)
 ...
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1200
 ...
END_OBJECT = TABLE

OBJECT = IMAGE
SAMPLES = 800
SAMPLE_BITS = 8
 ...
END_OBJECT = IMAGE

.

Row 1

Row 2

800 Record
1

2

IMAGE

3

7

{

Appendix A. PDS Data Object Definitions A-95

Example - ASCII Table with ROW_BYTES < RECORD_BYTES
__
The following label subset and illustration provide the general characteristics of a product
containing a SERIES object containing 800 byte rows together with a TABLE object with 400 byte
rows:

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 800
...

OBJECT = TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES =400
...
END_OBJECT = TABLE

OBJECT =SERIES
INTERCHANGE_FORMAT =ASCII
ROW_BYTES = 800
...
END_OBJECT = SERIES

Example - Binary Table with ROW_BYTES < RECORD_BYTES
__
The following label subset and illustration provide the general characteristics of a product
containing an HEADER object containing one 500 byte row together with a TABLE with 1032
byte rows. In this case, both the HEADER and TABLE rows are blocked into 32500 byte records.
Note that the rows cross record boundaries.

Row 1 CR LF Row 2 CR LF

TABLE

SERIES

Record

1

.

.

.

46

HEADER Row 1 . . . Row 31 R

TABLE

Row 1425

2

byte 1 501
32492

32500

Row 32

A-96 Appendix A. PDS Data Object Definitions

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3

/* FILE CHARACTERISTICS */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 32500
FILE_RECORDS = 46
^HEADER = ("ADF01141.3",1)
^TABLE = ("ADF01141.3",501<BYTES>)

/* IDENTIFICATION KEYWORDS */
DATA_SET_ID = "MGN-V-RDRS-5-CDR-ALT/RAD-V1.0"
PRODUCT_ID = "ADF01141.3"
TARGET_NAME = VENUS
SPACECRAFT_NAME = MAGELLAN
INSTRUMENT_NAME = "RADAR SYSTEM"
MISSION_PHASE_NAME = PRIMARY_MISSION
PRODUCT_CREATION_TIME = 1991-07-23T06:16:02.000Z
ORBIT_NUMBER = 1141
START_TIME = UNK
STOP_TIME = UNK
SPACECRAFT_CLOCK_START_COUNT = UNK
SPACECRAFT_CLOCK_STOP_COUNT = UNK
HARDWARE_VERSION_ID = 01
SOFTWARE_VERSION_ID = 02
UPLOAD_ID = M0356N
NAVIGATION_SOLUTION_ID = "ID = M0361-12 "
DESCRIPTION = " This file contains binary records describing, in time order, each altimeter
footprint measured during an orbit of the Magellan radar mapper."

/* DATA OBJECT DEFINITION DESCRIPTIONS */
OBJECT = HEADER
HEADER_TYPE = SFDU
BYTES = 500
END_OBJECT = HEADER
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 1425
COLUMNS = 40
ROW_BYTES = 1032
^STRUCTURE = "ADFTBL.FMT"
END_OBJECT = TABLE
END

Contents of format file "ADFTBL.FMT"

OBJECT = COLUMN
NAME = SFDU_LABEL_AND_LENGTH
START_BYTE = 1
DATA_TYPE = CHARACTER
BYTES = 20
UNIT = "N/A"
DESCRIPTION = "
The SFDU_label_and_length element identifies the label and length of the Standard Format Data Unit (SFDU)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FOOTPRINT_NUMBER
START_BYTE = 21

Appendix A. PDS Data Object Definitions A-97

DATA_TYPE = LSB_INTEGER
BYTES = 4
UNIT = "N/A"
DESCRIPTION = "The footprint_number element provides a signed integer value. The altimetry
and radiometry processing program assigns footprint 0 to that observed at nadir at periapsis. The remaining footprints are located
along the spacecraft nadir track, with a separation that depends on the Doppler resolution of the altimeter at the epoch at which that
footprint is observed. Pre-periapsis footprints will be assigned negative numbers, post-periapsis footprints will be assigned positive
ones. A loss of several consecutive burst records from the ALT-EDR will result in missing footprint numbers."

END_OBJECT = COLUMN

...

OBJECT = COLUMN
 NAME = DERIVED_THRESH_DETECTOR_INDEX
 START_BYTE = 1001
 DATA_TYPE = LSB_UNSIGNED_INTEGER
 BYTES = 4
 UNIT = "N/A"
 DESCRIPTION = "The derived_thresh_detector_index element provides the value of the element
in range_sharp_echo_profile that satisfies the altimeter threshold detection algorithm, representing the distance to the nearest object
in this radar footprint in units of 33.2 meters, modulus a 10.02 kilometer altimeter range ambiguity."
END_OBJECT = COLUMN

Example - Alternate format; PDS Recommended
__
The following label subset and illustration provide an alternate data organization for the preceding
example. In this example, a record size of 1032 is used to match the row size of the TABLE, and
the 500 byte HEADER uses only a portion of the first record. This organization would conform to
the PDS recommended TABLE structure.

...
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1032
FILE_RECORDS = 1426
^HEADER = ("ADF01141.3",1)
^TABLE = ("ADF01141.3",2)

Row 1
Row 2

1032 Record
1

2

TABLE

3
.
.
.

HEADER

Row 1425

.

.

.

1426

A-98 Appendix A. PDS Data Object Definitions

 ...

/* DATA OBJECT DEFINITIONS */
OBJECT = HEADER
 HEADER_TYPE = SFDU
 BYTES = 500
END_OBJECT
OBJECT = TABLE
 INTERCHANGE_FORMAT = BINARY
 ROWS = 1425
 COLUMNS = 40
 ROW_BYTES = 1032
 ^STRUCTURE = "ADFTBL.FMT"
END_OBJECT
END

Example - Alternate format; Rows on Record Boundaries
__

The following label subset and illustration provide a second alternate data organization for the
preceding example. In this example, a record size of 66048 is used to hold 30 rows of the TABLE.
Again the 500 byte HEADER uses only a portion of the first record.

...
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =30960
FILE_RECORDS =49
^HEADER = ("ADF01141.3",1)
^TABLE = ("ADF01141.3",2)
 ...

/* DATA OBJECT DEFINITIONS */
OBJECT = HEADER
 HEADER_TYPE = SFDU
 BYTES = 500
END_OBJECT

Record

1

.

.

.

49

HDR

Row 1

TABLE

Row 1425

2

30960

. . .

Row 31 . . .

Row 30

Row 60

.

.

.

3

Row 1411 . . .

Appendix A. PDS Data Object Definitions A-99

OBJECT = TABLE
 INTERCHANGE_FORMAT = BINARY
 ROWS = 1425
 COLUMNS = 40
 ROW_BYTES = 1032
 ^STRUCTURE = "ADFTBL.FMT"
END_OBJECT
END

A.27.3.2 Multiple TABLEs with varying ROW_BYTES

A data product may contain several ASCII or binary tables, each with a different row size.

Example - Fixed Length Records - Multiple ASCII tables
__
The following label subset and illustration utilizes fixed length records of the maximum row size.
The smaller table is padded with spares preceding the <CR><LF>. Note that the ROW_BYTES
keyword in A_TABLE could be replaced by ROW_BYTES = 800 and ROW_SUFFIX_BYTES =
200. See section A.27.4 for further information on handling spares.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = A_TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 1000
 ...
END_OBJECT = A_TABLE

OBJECT = B_TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 1000
 ...
END_OBJECT = B_TABLE

A_TABLE

B_TABLE

1000

800 200

Spare

A-100 Appendix A. PDS Data Object Definitions

Example - Stream Records - Multiple ASCII tables
__
The following label subset and illustration utilizes stream records for the same data as the previous
example, placing the <CR><LF> pair at the end of the data in each table. There is no need to pad
out the smaller table using the STREAM format, and the RECORD_BYTES keyword is not
applicable.

RECORD_TYPE = STREAM
 ...
OBJECT = A_TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 802
 ...
END_OBJECT = A_TABLE

OBJECT = B_TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 1000
 ...
 END_OBJECT = B_TABLE

.

B_TABLE

A_TABLE

1000

802

Appendix A. PDS Data Object Definitions A-101

Example - Fixed Length Records - Multiple Binary tables
__
The following label subset and illustration utilizes fixed length records of the maximum row size.
The smaller table has a spare set of bytes in each record, explicitly defined in a “spare” COLUMN
object. Note that the ROW_BYTES keyword in A_TABLE could be replaced by ROW_BYTES
= 800 and ROW_SUFFIX_BYTES = 200, instead of explicitly defining the SPARE column. See
section A.27.4 for further information on handling spares.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = A_TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
 ...
OBJECT = COLUMN
NAME = "SPARE"
DATA_TYPE = "N/A"
START_BYTE = 801
BYTES = 200
END_OBJECT = COLUMN
END_OBJECT = A_TABLE

OBJECT = B_TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
 ...
END_OBJECT = B_TABLE

A.27.3.3 ROW_PREFIX or ROW_SUFFIX use

There are currently two methods to utilize ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES
in TABLE objects. The first application is limited to Binary TABLE objects that are adjacent to
another object, such that each object shares the same record in a file. The second application is for
identifying spare bytes at the beginning or end of a record that are not considered part of the
TABLE data.

1000

B_TABLE

A_TABLE Spare

800 200

A-102 Appendix A. PDS Data Object Definitions

Example - Row Suffix use for compound TABLE and IMAGE
__
The following label subset and illustration utilizes fixed length records each containing a row of a
TABLE data object, and a line of an IMAGE object. This is a common format for providing
ancillary information applicable to each IMAGE line.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 200
ROW_SUFFIX_BYTES = 800
 ...
END_OBJECT = TABLE

OBJECT = IMAGE
LINE_SAMPLES = 800
SAMPLE_BITS = 8
LINE_PREFIX_BYTES = 200
 ...
END_OBJECT = IMAGE

The following RULES apply to the use of ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES:

1. For compound “table based” objects (TABLE, SPECTRUM, SERIES) in a data
product, or for identifying Spare parts of a record:

RECORD_BYTES = ROW_BYTES + ROW_PREFIX_BYTES + ROW_SUFFIX_BYTES

2. For compound “table based” and IMAGE objects in a data product:

RECORD_BYTES = (LINE_SAMPLES * SAMPLE_BITS / 8) + ROW_PREFIX_BYTES +
ROW_SUFFIX_BYTES

A.27.3.4 CONTAINER Object use

Complicated or lengthy tables that have a set of COLUMNS that repeat are often easier to describe
with an illustration and the use of the CONTAINER sub-object in a TABLE description. The use
of the container sub-object eliminates the need for repeating a group of COLUMN objects and
adjusting the START_BYTE locations and descriptions for each repetition. Section A.8 provides
an example of a TABLE utilizing the CONTAINER sub-object.

IMAGE

PREFIX

TABLE

IMAGE

1000

Row 1 Line 1

200

Line 800Row 800

Record

1

.

.

.

800

800

Appendix A. PDS Data Object Definitions A-103

A.27.4 Guidelines for SPARE fields

There is often a need to reserve SPARE (or pad, filler, etc.). bytes in TABLE, SPECTRUM, and
SERIES objects. While this is not required, it facilitates validation and ensures that the data
producer did not inadvertently forget to account for some fields in the data. These guidelines differ
slightly for BINARY and ASCII tables and FIXED_LENGTH or STREAM record files.

In all of the following guidelines, “embedded spares” refer to empty or spare bytes that are
currently unused and are not defined as part of a data COLUMN.

A.27.4.1 BINARY Tables - Fixed Length Records

The guidelines for handling SPARE fields in Fixed Length Binary Tables are:

- Embedded spares are allowed.
- Embedded spares are explicitly defined (with COLUMN Objects).
- Multiple Spare columns may all have NAME = SPARE
- Spares are allowed at the beginning or end of each row of data.
- Spares at the beginning or end of the data can be identified with
 1) an explicit COLUMN object or
or
 2) use of ROW_PREFIX_BYTES or ROW_SUFFIX_BYTES (note that these bytes should not
be included in the value of ROW_BYTES)
- DATA_TYPE for Spare COLUMNS in binary table is 'N/A'

Example - SPARE field embedded in a Binary TABLE
__
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
COLUMNS = 99
 ...
OBJECT = COLUMN
NAME = SPARE
START_BYTE = 801
BYTES = 20
DATA_TYPE = "N/A"
 ...
END_OBJECT = COLUMN
END_OBJECT = TABLE

800 20

TABL E

1000

Column 1 . . . 99

A-104 Appendix A. PDS Data Object Definitions

Example - Spares at end of a Binary TABLE - Explicit 'SPARE' Column
__

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
COLUMNS = 99
 ...
OBJECT = COLUMN
NAME = SPARE
BYTES = 20
DATA_TYPE = "N/A"
START_BYTE = 981
 ...
END_OBJECT = COLUMN
END_OBJECT = TABLE

Example - Spares at end of a Binary TABLE - ROW_SUFFIX use
__

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
 ...
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 980
ROW_SUFFIX_BYTES = 20
COLUMNS = 98
 ...
END_OBJECT = TABLE

A.27.4.2 ASCII Tables - Fixed Length Records

In ASCII tables, field delimiters (") and (,) and the <CR><LF> pair are considered part of the data,
even though the COLUMN objects attributes do not include them. Spares in ASCII tables are
limited to the “space” character (ASCII 20). The guidelines for handling SPARE fields in Fixed
Length ASCII Tables are:

.

20

TABLE

1000

Column 1 . . . 99

.

20

TABLE

1000

Column 1 . . . 98

Appendix A. PDS Data Object Definitions A-105

- Embedded spares are not allowed.
- Spares are allowed at the end of each row of data.
- The <CR><LF> follows the spare data.
- There are no delimiters (commas or quotes) surrounding the spares.
- Spares at the end of the data can be ignored (like field delimiters and CR LF) or they can be
identified
1) in the Table Description
or
2) by using ROW_SUFFIX_BYTES (note that these bytes should not be included in the value of
ROW_BYTES)

Example - SPARE field at end of ASCII TABLE - Table description note
__

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
...
OBJECT = TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 1000
...

DECRIPTION ="This table contains
980 bytes of table data followed by 18 bytes of blank spares.
Byte 999 and 1000 contain the <CR> <LF>
pair."

TABLE Spare

18

1000

980
C

R
L

F

A-106 Appendix A. PDS Data Object Definitions

Example - Spares at end of a ASCII TABLE - ROW_SUFFIX use.
__

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000
...
OBJECT = TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES = 980
ROW_SUFFIX_BYTES = 20
...
END_OBJECT = TABLE

A.27.5 ASCII Tables - STREAM Records

Spares are not used with ASCII Tables in STREAM record formats. In STREAM files, the last data
field explicitly defined with a COLUMN object is followed immediately by the <CR><LF> pair.
Since there is no use for spares at the end of the data, and embedded spares are not allowed in
ASCII tables, spares are not applicable here.

TABLE Spare

C
R LF

980 20

ROW_SUFFIX{

Appendix A. PDS Data Object Definitions A-107

A.28 TEXT

The TEXT object contains plain text which begins immediately after the END statement. It is
recommended that TEXT objects contain no special formatting characters, with the exception of
the carriage return/line feed sequence and the page break. Tabs are discouraged, since they are
interpreted differently by different programs. It is important to include BOTH the carriage return
and line feed characters when preparing files for use on a variety of host systems.

Use of the Macintosh or Unix line terminators will cause text to be unreadable on other host
computers. It is recommended that text lines be limited to 80 characters inclusive of the Carriage
Return (Control M, HexOxOd) and Line Feed (Control J, HexOxOa) line delimiters.

NOTE: The text object is used in files describing the contents of an archive volume or the contents
of a directory, such as AAREADME.TXT, DOCINFO.TXT, VOLINFO.TXT, SOFTINFO.TXT,
etc. These files must be in plain unmarked ASCII text and always have the file name extension of
.TXT. Documents placed on the volume in plain ASCII text, on the other hand, must be described
using the DOCUMENT object. (See the definition of the DOCUMENT Object in Appendix A.)

The NOTE field provides a brief introduction to the TEXT.

 Required Keywords

1. NOTE
2. PUBLICATION_DATE

 Optional Keywords

1. INTERCHANGE_FORMAT

Required Objects

None

 Optional Objects

None

A-108 Appendix A. PDS Data Object Definitions

Example

 The example below is a portion of an AAREADME.TXT file.
__

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
RECORD_TYPE = STREAM

OBJECT = TEXT
PUBLICATION_DATE = 1991-05-28
NOTE = "Introduction to this CD-ROM volume."
END_OBJECT = TEXT
END
 GEOLOGIC REMOTE SENSING FIELD EXPERIMENT

This set of compact read-only optical disks (CD-ROMs) contains a data collection acquired by ground-based and airborne
instruments during the Geologic Remote Sensing Field Experiment (GRSFE). Extensive documentation is also included. GRSFE
took place in July, September, and October, 1989, in the southern Mojave Desert, Death Valley, and the Lunar Crater Volcanic
Field, Nevada. The purpose of these CD-ROMs is to make available in a compact form through the Planetary Data System (PDS)
a collection of relevant data to conduct analyses in preparation for the Earth Observing System (EOS), Mars Observer (MO), and
other missions. The generation of this set of CD-ROMs was sponsored by the NASA Planetary Geology and Geophysics Program,
the Planetary Data System (PDS) and the Pilot Land Data System (PLDS).

This AAREADME.TXT file is one of the two nondirectory files located in the top level directory of each CD-ROM volume in this
collection. The other file, VOLDESC.CAT, contains an overview of the data sets on these CD-ROMs and is written in a format that
is designed for access by computers. These two files appear on every volume in the collection. All other files on the CD-ROMs
are located in directories below the top level directory

Appendix A. PDS Data Object Definitions A-109

A.29 VOLUME

The VOLUME object describes a physical or logical unit used to store or distribute data products
(e.g. a magnetic tape, CD-ROM disk, On-Line Magnetic disk or floppy disk) which contain
directories and files. The directories and files may include documentation, software, calibration
and geometry information as well as the actual science data.

Required Keywords

1. DATA_SET_ID
2. DESCRIPTION
3. MEDIUM_TYPE
4. PUBLICATION_DATE
5. VOLUME_FORMAT
6. VOLUME_ID
7. VOLUME_NAME
8. VOLUME_SERIES_NAME
9. VOLUME_SET_NAME
10.VOLUME_SET_ID
11.VOLUME_VERSION_ID
12.VOLUMES

Optional Keywords

1. BLOCK_BYTES
2. DATA_SET_COLLECTION_ID
3. FILES
4. HARDWARE_MODEL_ID
5. LOGICAL_VOLUMES
6. LOGICAL_VOLUME_PATH_NAME
7. MEDIUM_FORMAT
8. NOTE
9. OPERATING_SYSTEM_ID
10. PRODUCT_TYPE
11. TRANSFER_COMMAND_TEXT
12. VOLUME_INSERT_TEXT

Required Objects

1. CATALOG
2. DATA_PRODUCER

A-110 Appendix A. PDS Data Object Definitions

Optional Objects

1. DIRECTORY
2. FILE
3. DATA_SUPPLIER

Example 1 (Typical CD-ROM Volume)

Please see example in A.5 CATALOG.

Example 2 (Tape Volume)

The following VOLUME object example shows how directories and files are indicated when a
volume is stored on ANSI tape for transfer. This form should be used when transferring volumes
of data on media which do not support hierarchical directory structures (for example, submitting a
volume of data for premastering). The VOLDESC.CAT file will contain the standard volume
keywords, but the values of MEDIUM_TYPE, MEDIUM_FORMAT and VOLUME_FORMAT
indicate that the volume is stored on tape.

In this example two files are defined in the root directory of the volume, VOLDESC.CAT and
AAREADME.TXT. The first directory object defines the CATALOG directory which contains
meta data in the High Level Catalog Templates. Here they all exist in one file, CATALOG.CAT.
The second directory object defines an INDEX subdirectory, with three files embedded in it
(INDXINFO.TXT, INDEX.LBL, INDEX.TAB). Following that directory, the first data directory
is defined. Note that the sequence number field indicates the sequence of the file on the tape
volume.
--
CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3
OBJECT = VOLUME
VOLUME_SERIES_NAME = "MISSION TO MARS"
VOLUME_SET_NAME = "MARS DIGITAL IMAGE MOSAIC AND DIGITAL TERRAIN MODEL"
VOLUME_SET_ID = USA_NASA_PDS_VO_2001_TO_VO_2007
VOLUMES = 7
VOLUME_NAME = "MDIM/DTM VOLUME 7: GLOBAL COVERAGE"
VOLUME_ID = VO_2007
VOLUME_VERSION_ID = "VERSION 1"
PUBLICATION_DATE = 1992-04-01
DATA_SET_ID = "VO1/VO2-M-VIS-5-DTM-V1.0"
MEDIUM_TYPE = "8-MM HELICAL SCAN TAPE"
MEDIUM_FORMAT = "2 GB"
VOLUME_FORMAT = ANSI
HARDWARE_MODEL_ID = "VAX 11/750"
OPERATING_SYSTEM_ID = "VMS 4.6"
DESCRIPTION = "This volume contains the Mars Digital Terrain Model and Mosaicked Digital
Image Model covering the entire planet at resolutions of 1/64 and 1/16 degree/pixel. The volume also contains Polar Stereographic
projection files of the north and south pole areas from 80 to 90 degrees latitude; Mars Shaded Relief Airbrush Maps at 1/16 and 1/
4 degree/pixel; a gazetteer of Mars features; and a table of updated viewing geometry files of the Viking EDR images that comprise
the MDIM."
MISSION_NAME = VIKING
SPACECRAFT_NAME = {VIKING_ORBITER_1,VIKING_ORBITER_2}
SPACECRAFT_ID = {VO1,VO2}

Appendix A. PDS Data Object Definitions A-111

OBJECT = DATA_PRODUCER
INSTITUTION_NAME = "U.S.G.S. FLAGSTAFF"
FACILITY_NAME = "BRANCH OF ASTROGEOLOGY"
FULL_NAME = "Eric M. Eliason"
DISCIPLINE_NAME = "IMAGE PROCESSING"
ADDRESS_TEXT = " Branch of Astrogeology \n
 United States Geological Survey\n
 2255 North Gemini Drive\n
 Flagstaff, Arizona. 86001 USA"
END_OBJECT = DATA_PRODUCER

OBJECT = CATALOG
^CATALOG = "CATALOG.CAT"
END_OBJECT = CATALOG

OBJECT = FILE
FILE_NAME = "VOLDESC.CAT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 1
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "AAREADME.TXT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 2
END_OBJECT = FILE

OBJECT = DIRECTORY
NAME = CATALOG

OBJECT = FILE
FILE_NAME = "CATALOG.CAT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 3
END_OBJECT = FILE
END_OBJECT = DIRECTORY

OBJECT = DIRECTORY
NAME = DOCUMENT

OBJECT = FILE
FILE_NAME = "VOLINFO.TXT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 4
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "DOCINFO.TXT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 5
END_OBJECT = FILE
END_OBJECT = DIRECTORY

OBJECT = DIRECTORY
NAME = INDEX

OBJECT = FILE
FILE_NAME = "INDXINFO.TXT"

A-112 Appendix A. PDS Data Object Definitions

RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 6
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "INDEX.LBL"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER = 7
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "INDEX.TAB"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 6822
SEQUENCE_NUMBER = 8
END_OBJECT = FILE
END_OBJECT = DIRECTORY

OBJECT = DIRECTORY
NAME = MG00NXXX

OBJECT = FILE
FILE_NAME = "MG00N007.IMG"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 964
FILE_RECORDS = 965
SEQUENCE_NUMBER = 9
END_OBJECT = FILE

OBJECT = FILE
FILE_NAME = "MG00N012.IMG"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 964
FILE_RECORDS = 965
SEQUENCE_NUMBER = 10
END_OBJECT = FILE

END_OBJECT = DIRECTORY

END_OBJECT = VOLUME
END

Appendix A. PDS Data Object Definitions A-113

Example 3a (CD-ROM Volume containing logical volumes)
Examples 3a and 3b illustrate the use of the VOLUME Object in the top level and at the logical
volume level of an archive volume. Note that the VOLUME Object is required at both levels.

For examples 3a and 3b, the CD-ROM is structured as three separate logical volumes with root
directories named PPS/, UVS/ and RSS/. An additional SOFTWARE directory is supplied at
volume root for use with all logical volumes.

Example 3a illustrates the use of the VOLUME Object present at the top level of a CD-ROM
containing logical volumes. Note usage of the keywords DATA_SET_ID,
LOGICAL_VOLUMES, and LOGICAL_VOLUME_PATH_NAME.

PDS_VERSION_ID = PDS3
OBJECT = VOLUME
VOLUME_SERIES_NAME = "VOYAGERS TO THE OUTER PLANETS"
VOLUME_SET_NAME = "PLANETARY RING OCCULTATIONS FROM VOYAGER"
VOLUME_SET_ID = "USA_NASA_PDS_VG_3001"
VOLUMES = 1
MEDIUM_TYPE = "CD-ROM"
VOLUME_FORMAT = "ISO-9660"
VOLUME_NAME = "VOYAGER PPS/UVS/RSS RING OCCULTATIONS"
VOLUME_ID = "VG_3001"
VOLUME_VERSION_ID = "VERSION 1"
PUBLICATION_DATE = 1994-03-01
DATA_SET_ID = {"VG2-SR/UR/NR-PPS-4-OCC-V1.0",

"VG1/VG2-SR/UR/NR-UVS-4-OCC-V1.0","VG1/VG2-SR/UR/NR-RSS-4-
OCC-V1.0"}

LOGICAL_VOLUMES = 3
LOGICAL_VOLUME_PATH_NAME = {"PPS/", "UVS/", "RSS/"}
DESCRIPTION = "This volume contains the Voyager 1 and Voyager 2 PPS/UVS/RSS ring
occultation and ODR data sets. Included are data files at a variety of levels of processing, plus ancillary geometry, calibration and
trajectory files plus software and documentation.

This CD-ROM is structured as three separate logical volumes with root directories named PPS/, UVS/ and RSS/. An additional
SOFTWARE directory is supplied at volume root for use with all logical volumes."

OBJECT = DATA_PRODUCER
INSTITUTION_NAME = "PDS RINGS NODE"
FACILITY_NAME = "NASA AMES RESEARCH CENTER"
FULL_NAME = "DR. MARK R. SHOWALTER"
DISCIPLINE_NAME = "RINGS"
ADDRESS_TEXT = "Mail Stop 245-3 \n
 NASA Ames Research Center \n
 Moffett Field, CA 94035-1000"
END_OBJECT = DATA_PRODUCER

OBJECT = CATALOG
DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-OCC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "PPS/"
^MISSION_CATALOG = "MISSION.CAT"
^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
^INSTRUMENT_CATALOG = "INST.CAT"
^DATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"
^DATA_SET_CATALOG = "DATASET.CAT"
^REFERENCE_CATALOG = "REF.CAT"
^PERSONNEL_CATALOG = "PERSON.CAT"

A-114 Appendix A. PDS Data Object Definitions

END_OBJECT = CATALOG

OBJECT = CATALOG
DATA_SET_ID = "VG1/VG2-SR/UR/NR-UVS-4-OCC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "UVS/"
^MISSION_CATALOG = "MISSION.CAT"
^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
^INSTRUMENT_CATALOG = "INST.CAT"
^DATA_SET_COLLECTION_CATALOG ="DSCOLL.CAT"
^DATA_SET_CATALOG = "DATASET.CAT"
^REFERENCE_CATALOG = "REF.CAT"
^PERSONNEL_CATALOG = "PERSON.CAT"
END_OBJECT = CATALOG

OBJECT = CATALOG
DATA_SET_ID = "VG1/VG2-SR/UR/NR-RSS-4-OCC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "RSS/"
^MISSION_CATALOG = "MISSION.CAT"
^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
^INSTRUMENT_CATALOG = "INST.CAT"
^DATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"
^DATA_SET_CATALOG = "DATASET.CAT"
^REFERENCE_CATALOG = "REF.CAT"
^PERSONNEL_CATALOG = "PERSON.CAT"
END_OBJECT = CATALOG

END_OBJECT = VOLUME
END

Example 3b (PPS/VOLDESC.CAT -- CD-ROM logical volume)

Example 3b illustrates the use of the Volume object which is required at the top level of a logical
volume. Note the difference in values for the keywords DATA_SET_ID and
LOGICAL_VOLUME_PATH_NAME from those used at the top level of the CD-ROM (example
3a). Also note that the keyword LOGICAL_VOLUMES does not appear here.

PDS_VERSION_ID = PDS3
OBJECT = VOLUME
VOLUME_SERIES_NAME = "VOYAGERS TO THE OUTER PLANETS"
VOLUME_SET_NAME = "PLANETARY RING OCCULTATIONS

FROM VOYAGER"
VOLUME_SET_ID = "USA_NASA_PDS_VG_3001"
VOLUMES = 1
MEDIUM_TYPE = "CD-ROM"
VOLUME_FORMAT = "ISO-9660"
VOLUME_NAME = "VOYAGER PPS/UVS/RSS RING

OCCULTATIONS"
VOLUME_ID = "VG_3001"
VOLUME_VERSION_ID = "VERSION 1"
PUBLICATION_DATE = 1994-03-01
DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-OCC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "PPS/"
DESCRIPTION = "This logical volume contains the Voyager 2 PPS ring occultation data sets.
Included are data files at a variety of levels of processing, plus ancillary geometry, calibration and trajectory files plus software and
documentation."

OBJECT = DATA_PRODUCER

Appendix A. PDS Data Object Definitions A-115

INSTITUTION_NAME = "PDS RINGS NODE"
FACILITY_NAME = "NASA AMES RESEARCH CENTER"
FULL_NAME = "DR. MARK R. SHOWALTER"
DISCIPLINE_NAME = "RINGS"
ADDRESS_TEXT = "Mail Stop 245-3
NASA Ames Research Center
Moffett Field, CA 94035-1000"
END_OBJECT = DATA_PRODUCER

OBJECT = CATALOG
DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-OCC-V1.0"
LOGICAL_VOLUME_PATH_NAME = "PPS/"
^MISSION_CATALOG = "MISSION.CAT"
^INSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"
^INSTRUMENT_CATALOG = "INST.CAT"
^DATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"
^DATA_SET_CATALOG = "DATASET.CAT"
^REFERENCE_CATALOG = "REF.CAT"
^PERSONNEL_CATALOG = "PERSON.CAT"
END_OBJECT = CATALOG

END_OBJECT = VOLUME
END

A-116 Appendix A. PDS Data Object Definitions

Appendix B. Complete PDS Catalog Object Template Set B-1

Appendix B

Complete PDS Catalog Object Template Set

This appendix provides a complete set of the PDS catalog objects in alphabetical order. Each
section includes a description, a list of sub-objects, guidelines to follow in filling them out, and a
specific example of the object.

The templates are used to load the PDS Data Set Catalog. (DATA_SET_MAP_PROJECTION and
SOFTWARE are exceptions. They are not used currently to load data into the catalog.)

Templates are also used as documentation on PDS archived data sets. PDS requires that either the
full set of templates be present in the CATALOG subdirectory or the file VOLINFO.TXT be
present in the DOCUMENT subdirectory of an archive volume. See the File Specification and
Naming chapter of this document for pointer and file names used with catalog object templates.

Depending on the type of data you are submitting, you may not need to complete every template.
Your PDS Central Node Data Engineer will supply you with blank catalog templates to be
completed.

Definitions and examples are provided here for your convenience. Additional examples may be
obtained by contacting your Data Engineer.

The examples reflect the format to ingest metadata into the PDS catalog. Text descriptions (e.g.,
DATA_SET_DESC, INSTRUMENT_DESC) should not exceed 80 characters inclusive of
<CR><LF> line delimiters. Of note is the underlining convention for headings and subheadings in
longer text fields. Main headings are double-underlined through the use of the equal-sign key (=)
which corresponds to ASCII decimal 61. Subheadings are single-underlined through the use of the
hyphen key (-) which corresponds to ASCII decimal 45. This underlining convention enhances
legibility, and in the future will facilitate the creation of hypertext links.

Also, PDS has adopted a convention for indenting primary headings, secondary headings, and
textual descriptions to facilitate readability and to make a better presentation on the web. Primary
headings start at Column 3. Text under primary headings and secondary headings start at Column
5. Text under secondary headings start at Column 7.

Again for ease of readability, there should be 2 blank lines before the start of a primary or
secondary heading. If a secondary heading immediately follows a primary heading, then only 1
blank should separate the secondary heading from the primary heading.

PDS has developed a Windows based program (FORMAT70) that will automatically format the
description fields of any catalog template.

B-2 Appendix B. Complete PDS Catalog Object Template Set

DATA_SET_DESC = "

Primary Heading - starts at Column 3
=========================

Text under headings start at Column 5
more text ...

(blank line)
(blank line)

Secondary Heading - starts at Column 5
--

 Text under subheadings start at Column 7
 more text

(blank line)
(blank line)

Primary Heading - starts at Column 3
=========================

(blank line)
Secondary Heading - starts at Column 5
--

 Text under subheadings start at Column 7
 more text

Appendix B. Complete PDS Catalog Object Template Set B-3

TABLE OF CONTENTS

B.1 DATA SET ..B-4

B.2 DATA SET COLLECTION ..B-12

B.3 DATA SET MAP PROJECTION..B-15

B.4 INSTRUMENT...B-18

B.5 INSTRUMENT HOST ...B-24

B.6 INVENTORY ...B-26

B.7 MISSION..B-28

B.8 PERSONNEL ...B-34

B.9 REFERENCE..B-36

B.10 SOFTWARE ...B-37

B.11 TARGET...B-39

B-4 Appendix B. Complete PDS Catalog Object Template Set

B.1 DATA SET

The DATA SET catalog object is used to submit information about a data set to the PDS. The
catalog object includes a free-form textual description of the data set and sub-objects for
identifying associated targets, hosts, and references. A separate REFERENCE object will need to
be completed for any new references not already part of the PDS catalog.

(1) The DATA SET INFORMATION catalog object includes two free-form textual
descriptions, DATA_SET_DESC and CONFIDENCE_LEVEL_NOTE.

NOTE: The following paragraph headings and subheadings are recommended as the minimum set
of headings needed to describe a data set adequately. Additional headings and sub-headings may
be added as desired. Should any of the more common headings not appear within a textual
description, it will be considered not applicable to the data set.

Under DATA_SET_DESC =

Data Set Overview
A high level description of the characteristics and properties of a data set.

Parameters
Describe the primary parameters (measured or derived quantities) included in the
data set, also units and sampling intervals.

Processing
Describe the overall processing used to produce the data set. Include a description
of the input data (and source), processing methods or software, and primary
parameters or assumptions used to produce the data set.

Data
Describe in detail each data type identified in the Data Set Overview, (e.g.,
Ancillary Data, Image Data, Table Data, etc.).

Ancillary Data
Describe ancillary information needed in interpreting the data set. These may or
may not be provided along with the data set. Include sources or references for
locating ancillary data.

Coordinate System
Describe the coordinate system or frame of reference to be used for proper
interpretation of the data set.

Software
Describe software for use with the data set. This may include software supplied with
the data set, or software or systems that may be accessed independently to assist in
visualization or analysis of the data.

Appendix B. Complete PDS Catalog Object Template Set B-5

Media/Format
Describe the media on which the data set is available for distribution. Include
format information that may limit the use of the data set on specific hardware
platforms (e.g., binary/ascii, IBM EBCDIC format).

Under CONFIDENCE_LEVEL_NOTE =

Confidence Level Overview
A high level description of the level of confidence (e.g., reliability, accuracy, or
certainty) of the data.

Review
Briefly describe any review process that took place prior to release of the data set
to insure the accuracy and completeness of the data and associated documentation.

Data Coverage and Quality
Describe the overall data coverage and quality. This should include information
about gaps in the data (both for times or regions). Include descriptions of how
missing or poor data are flagged or filled, if applicable.

Limitations
Describe limitations on the use of the data set. For example, discuss other data
required to properly interpret the data, or special processing systems expected to be
used to further reduce the data set for analysis. If the data set is calibrated or
otherwise corrected or derived, describe any known anomalies or uncertainties in
the results.

(OTHER - Data Supplier provided):

Add any other important information in additional headings as desired (e.g., Data
Compression, Time-Tagging, etc.)

(2) The DATA SET TARGET catalog object is completed for each target associated with the
data set. If there is more than one target, this object is repeated.

(3) The DATA SET HOST catalog object is completed for each host/instrument pair
associated with the data set. If there is more than one host/instrument pair, this object is
repeated.

(4) The DATA SET REFERENCE INFORMATION catalog object is completed for each
reference associated with the data set (e.g., articles, papers, memoranda, published data,
etc.). If there is more than one reference, this object is repeated. A separate REFERENCE
template is completed to provide the proper citation for each reference.

Important references including data set description, calibration procedures, processing
software documentation, review results, etc. should be included. These can be both

B-6 Appendix B. Complete PDS Catalog Object Template Set

published and internal documents or informal memoranda.

Example:

/* Template: Data Set Template Rev: 1993-09-24 */
/* */
/* Note: Complete one for each data set. Identify multiple targets associated with */
/* the data set by repeating the 3 lines for the DATA_SET_TARGET object. */
/* Identify multiple hosts associated with the data set by repeating the 4 lines */
/* for the DATA_SET_HOST object. Identify multiple references associated */
/* with the data set by repeating the 3 lines of the */
/* DATA_SET_REFERENCE_INFORMATION object. */

/* Hierarchy: DATA_SET */
/* DATA_SET_INFORMATION */
/* DATA_SET_TARGET */
/* DATA_SET_HOST */
/* DATA_SET_REFERENCE_INFORMATION */

CCSD3ZF0000100000001NJPL3IF0PDSX00000001

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = “RSIMPSON, 1998-07-01”
RECORD_TYPE = STREAM

OBJECT = DATA_SET
DATA_SET_ID = “MGN-V-RDRS-5-GVDR-V1.0”

OBJECT = DATA_SET_INFORMATION
DATA_SET_NAME = “MGN V RDRS DERIVED GLOBAL VECTOR

DATA RECORD V1.0”
DATA_SET_COLLECTION_MEMBER_FLG = “N”
DATA_OBJECT_TYPE = TABLE
START_TIME = 1990-08-01T00:00:00
STOP_TIME = 1993-12-31T23:59:59
DATA_SET_RELEASE_DATE = 1994-07-01
PRODUCER_FULL_NAME = “MICHAEL J. MAURER”
DETAILED_CATALOG_FLAG = “N”
DATA_SET_DESC = “

Data Set Overview
The Global Vector Data Record (GVDR) is a sorted collection of scattering and emission measurements from the
Magellan Mission.The sorting is into a grid of equal area 'pixels' distributed regularly about the planet. For data acquired
from the same pixel but in different observing geometries, there is a second level of sorting to accommodate the different
geometrical conditions. The 'pixel' dimension is 18.225 km. The GVDR is presented in Sinusoidal Equal Area
(equatorial), Mercator (equatorial), and Polar Stereographic (polar) projections.

The GVDR is intended to be the most systematic and comprehensive representation of the electromagnetic properties of
the Venus surface that can be derived from Magellan data at this resolution. It should be useful in characterizing and
comparing distinguishable surface units.

Parameters
The Magellan data set comprises three basic data types: echoes from the nadir-viewing altimeter (ALT), echoes from the
oblique backscatter synthetic aperture radar (SAR) imaging system, and passive radio thermal emission measurements
made using the SAR equipment. The objective in compiling the GVDR is to obtain an accurate estimate of the surface
backscattering function (sometimes called the specific backscatter function or 'sigma-zero') for Venus from these three

Appendix B. Complete PDS Catalog Object Template Set B-7

data types and to show its variation with incidence (polar) angle, azimuthal angle, and surface location.

The ALT data set has been analyzed to yield profiles of surface elevation [FORD&PETTENGILL1992] and estimates of
surface Fresnel reflectivity and estimates of meter-scale rms surface tilts by at least two independent methods
[FORD&PETTENGILL1992;TYLER1992]. The 'inversion' approach of [TYLER1992] provides, in addition, an
empirical estimate of the surface backscatter function at incidence angles from nadir to as much as 10 degrees from nadir
in steps of 0.5 degrees.

Statistical analysis of SAR image pixels for surface regions about 20 km (across track) by 2 km (along track) provided
estimates of the surface backscatter function over narrow angular ranges (1-4 degrees) between 15 and 50 degrees from
normal incidence [TYLER1992]. By combining results from several orbital passes over the same region in different
observing geometries, the backscatter response over the full oblique angular range (15-50) could be compiled. In fact, the
number of independent observing geometries attempted with Magellan was limited, and some of these represented
changes in azimuth rather than changes in incidence (or polar) angle. Nevertheless, data from many regions were collected
in more than one SAR observing geometry. Histograms of pixel values and quadratic fits to the surface backscattering
function over narrow ranges of incidence angle were computed by [TYLER1992].

Passive microwave emission by the surface of Venus was measured by the Magellan radar receiver between ALT and
SAR bursts.These measurements have been converted to estimates of surface emissivity [PETTENGILLETAL1992].
With certain assumptions the emissivity derived from these data should be the complement of the Fresnel reflectivity
derived from the ALT echo strengths.In cases where the two quantities do not add to unity, the assumptions about a simple
dielectric (Fresnel) interface at the surface of Venus must be adjusted.

Processing
The processing carried out at the Massachusetts Institute of Technology (MIT) to obtain altimetry profiles and estimates
of Fresnel reflectivity and rms surface tilts has been described elsewhere [FORD&PETTENGILL1992]. In brief it
involves fitting pre-computed templates to measured echo profiles; the topographic profiles, Fresnel reflectivities, and
rms surface tilts are chosen to minimize differences between the data and templates in a least-squares sense. The estimates
of emissivity require calibration of the raw data values and correction for attenuation and emission by the Venus
atmosphere [PETTENGILLETAL1992]. These data have been collected by orbit number on a set of compact discs
[FORD1992] and into a set of global maps, also distributed on compact disc [FORD1993].

At Stanford ALT-EDR tapes were the input for calculation of near-nadir empirical backscattering functions. For oblique
backscatter, C-BIDR tapes from the Magellan Project and F-BIDR files obtained via Internet from Washington University
were the input products. Output was collected on an orbit-by-orbit basis into a product known as the Surface
Characteristics Vector Data Record (SCVDR). The SCVDR has been delivered to the Magellan Project for orbits through
2599; processing of data beginning with orbit 2600 and continuing through the end-of-Mission is spending completion of
the first version of the GVDR.

Data
The GVDR data set comprises several 'tables' of results based on analysis of each of the data types described above. These
include:

(1) Image Data Table
(2) Radiometry Data Table
(3) MIT ALT Data Table
(4) Stanford ALT Data Table

(1) Image Data Table
This table contains results from analysis of SAR image strips.The results are parameterized by the azimuth angle, the
incidence (polar) angle, and the polarization angle. Quantities include the number of image frame lets used to compute
the scattering parameters; the median, the mode, and the one-standard-deviation limits of the pixel histogram; and the
three coefficients and the reference angle of the quadratic approximation to sigma-zero as a function of incidence angle.

(2) Radiometry Data Table

B-8 Appendix B. Complete PDS Catalog Object Template Set

This table contains results from MIT analysis of the radiometry data. The results are parameterized by the azimuth angle,
the incidence angle, and the polarization angle. The results include the number of radiometry footprints used to compute
the estimate of thermal emissivity, the emissivity, and its variance.

(3) MIT ALT Data Table
This table contains results derived from the MIT altimetry data analysis. The results include the number of ARCDR ADF
footprints used in computing the estimates of scattering properties for the pixel and estimates (and variances) of radius,
rms surface tilt, and Fresnel reflectivity from the ARCDR.

(4) Stanford ALT Data Table
This table contains results from the Stanford analysis of altimetry data. Results include the number of SCVDR footprints
used in computing the estimates of surface properties for this pixel, the centroid of the Doppler spectrum, the derived
scattering function and the angles over which it is valid, variance of the individual points in the derived scattering
function, and results of fitting analytic functions to the derived scattering function.

Ancillary Data
Ancillary data for most processing at both MIT and Stanford was obtained from the data tapes and files received from the
Magellan Project. These included trajectory and pointing information for the spacecraft, clock conversion tables,
spacecraft engineering data, and SAR processing parameters. For calibration of the radar instrument itself, Magellan
Project reports (including some received from Hughes Aircraft Co.[BARRY1987; CUEVAS1989; SE011]) were used.
Documentation on handling of data at the Jet Propulsion Laboratory was also used [BRILL&MEISL1990; SCIEDR;
SDPS101].

Coordinate System
The data are presented in gridded formats, tiled to ensure that closely spaced points on the surface occupy nearby storage
locations on the data storage medium. Four separate projections are used: sinusoidal equal area and Mercator for points
within 89 degrees of the equator, and polar stereographic for points near the north and south poles. The projections are
described by [SNYDER1987]; IAU conventions described by [DAVIESETAL1989] and Magellan Project assumptions
[LYONS1988] have been adopted.

Software
A special library and several example programs are provided in source code form for reading the GVDR data files. The
general-purpose example program will serve the needs of the casual user by accessing a given GVDR quantity over a
specified region of GVDR pixels. More advanced users may want to write their own programs that use the GVDR library
as a toolkit. The library, written in ANSI C, provides concise access methods for reading every quantity stored in the
GVDR. It conveniently handles allgeometric and tiling transformations and converts any compressed qualitites to a
standard native format. The general purpose program mentioned above provides an example of how to use this library.

Media/Format
The GVDR will be delivered to the Magellan Project (or its successor) using compact disc write once (CD-WO) media.
Formats will be based on standards for such products established by the Planetary Data System (PDS) [PDSSR1992].”

CONFIDENCE_LEVEL_NOTE = “

Confidence Level Overview
The GVDR is intended to be the most systematic and comprehensive representation of the electromagnetic properties of
the Venus surface that can be derived from Magellan data at this resolution. Nevertheless, there are limitations to what
can be done with the data.

Review
The GVDR will be reviewed internally by the Magellan Project prior to release to the planetary community. The GVDR
will also be reviewed by PDS.

Appendix B. Complete PDS Catalog Object Template Set B-9

Data Coverage and Quality
Because the orbit of Magellan was elliptical during most of its mapping operations, parts of the orbital coverage have
higher resolution and higher signal-to-noise than others.

Cycle 1 Mapping
During Mapping Cycle 1, periapsis was near 10 degrees N latitude at altitudes of approximately 300 km over the
surface. The altitude near the poles, on the other hand, was on the order of 3000 km. For all data types this means
lower confidence in the results obtained at the poles than near the equator.

Further, the spacecraft attitude was adjusted so that the SAR antenna was pointed at about 45 degrees from nadir
near periapsis; this was reduced to near 15 degrees at the poles.The objective was to compensate somewhat for the
changing elevation and to provide scattering at higher incidence angles when the echo signal was expected to be
strongest. The ALT antenna, at a constant 25 degree offset from the SAR antenna, followed in tandem but at angles
which were not optimized for obtaining the best altimetry echo.

During Mapping Cycle 1 almost half the orbits provided SAR images of the north pole; because of the orbit
inclination, ALT data never extended beyond about 85N latitude in the north and 85S in the south. No SAR images
of the south pole were acquired during Mapping Cycle 1 because the SAR antenna was always pointed to the left of
the ground track; the Cycle 1SAR image strip near the south pole was at a latitude equator ward of 85S.

Cycle 2 Mapping
During much of Mapping Cycle 2, the spacecraft was flown ‘backwards’ so as to provide SAR images of the same
terrain but with ‘opposite side’ illumination. This adjustment also meant that the SAR could image near the Venus
south pole (but not near the north pole). The ALT data continued to be limited to latitudes equator ward of 85N and
85S.

Cycle 3 Mapping
During Mapping Cycle 3 the emphasis was on obtaining SAR data from the same side as in Cycle 1 but at different
incidence angles (for radar stereo). In fact, most data were acquired at an incidence angle of about 25 degrees, which
meant that the ALT antenna was usually aimed directly at nadir instead of drifting from side to side, as had been the
case in Cycle 1.These Cycle 3 data, therefore, may be among the best from the altimeter. Dynamic range in SAR
data was larger than in Cycle1 because the incidence angle was fixed rather than varying to compensate for the
changing spacecraft height.

All Cycles
It is important to remember that, since the SAR and ALT antennas were aimed at different parts of the planet during
each orbit, building up a collection of composite scattering data for any single surface region requires that results
from several orbits be integrated. In the case of data from polar regions, where only the SAR was able to probe, there
will be no ALT data. When scheduling or other factors interrupted the systematic collection of data, there may be
ALT data for some regions but no comparable SAR or radiometry data (or viceversa).

Note that for all Cycles outages played an important role in determining coverage. For example, although a goal of
Cycle 3 radar mapping was radar stereo, early orbits were used to collect data at nominal incidence angles that had
been missed during Cycle 1 because of thermal problems with the spacecraft. A transmitter failure during Cycle 3
caused a loss of further data. It is not within the scope of this description to provide detailed information on data
coverage.

Limitations
Both the template fitting approach and the inversion approach will have their limitations in estimating overall surface
properties for a region on Venus. The template calculation assumes that scattering is well-behaved at all incidence angles
from 0 to 90 degrees and that a template representing that behavior can be constructed. The Hagfors function
[HAGFORS1964]used by MIT, however, fails to give a finite rms surface tilt if used over this range of angles, so
approximations based on a change in the scattering mechanism must be applied[HAGFORS&EVANS1968]. The
inversion method [TYLER1992] is susceptible to noise at the higher incidence angles and this will corrupt solutions if not
handled properly. Users of this data set should be aware that radar echoes are statistically variable and that each result has
an uncertainty.

A nominal nadir footprint can be assigned to altimetry results, but this footprint is biased near periapsis because the ALT
antenna is rotated about 20 degrees from nadir (during Cycle 1).Over polar regions in Cycle 1, the ALT antenna is rotated

B-10 Appendix B. Complete PDS Catalog Object Template Set

about 10 degrees to the opposite side of nadir. A more important consideration in polar regions is that the area illuminated
by the ALT antenna is approximately 100 times as large as near periapsis because of the higher spacecraft altitude. The
region contributing to echoes in polar regions -- and therefore the region over which estimates of Fresnel reflectivity and
rms surface tilts apply -- is much larger than at periapsis. ”

END_OBJECT = DATA_SET_INFORMATION

OBJECT = DATA_SET_TARGET
TARGET_NAME = VENUS
END_OBJECT = DATA_SET_TARGET

OBJECT = DATA_SET_HOST
INSTRUMENT_HOST_ID = MGN
INSTRUMENT_ID = RDRS
END_OBJECT = DATA_SET_HOST

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “BARRY1987”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “BRILL&MEISL1990”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “CUEVAS1989”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “DAVIESETAL1989”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “FORD1992”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “FORD1993”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “FORD&PETTENGILL1992”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “HAGFORS1964”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “HAGFORS&EVANS1968”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “LYONS1988”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “PDSSR1992”

Appendix B. Complete PDS Catalog Object Template Set B-11

END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “PETTENGILLETAL1992”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “SCIEDR”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “SDPS101”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “SE011”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “SNYDER1987”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

OBJECT = DATA_SET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “TYLER1992”
END_OBJECT = DATA_SET_REFERENCE_INFORMATION

END_OBJECT = DATA_SET

END

B-12 Appendix B. Complete PDS Catalog Object Template Set

B.2 DATA SET COLLECTION

The DATA SET COLLECTION catalog object is used to link several data sets as a collection to
be used and distributed together.

(1) The DATA SET COLLECTION INFO catalog object provides a description and usage, as
well as other information specific to the data set collection. This object includes a free-form
textual description, DATA_SET_COLLECTION_DESC.

NOTE: The paragraph headings and subheadings are recommended as the minimum set of
headings needed to describe a data set collection adequately. Additional headings and sub-
headings may be added as desired. Should any of the more common headings not appear
within a textual description, it will be considered not applicable to the data set collection.

Under DATA_SET_COLLECTION_INFO =

Data Set Collection Overview
A high-level description of the characteristics and properties of a data set collection.

Data Set Collection Usage Overview
A high-level description of the intended use of a data set collection.

(2) The DATA SET COLL ASSOC DATA SET catalog object is repeated for each data set
associated with the collection. For example, if there are three distinct data sets which make
up a collection, this object will be repeated three different times, one object per data set.

(3) The DATA SET COLL REF INFO catalog object associated a reference with the data set
collection. It is repeated for each reference to be identified for the collection. A separate
REFERENCE template is completed to provide the associated reference citation for each
new reference submitted to PDS.

Example:

/* Template: Data Set Collection Template Rev: 1993-09-24 */

/* Note: Complete one template for each data set collection. Identify */
/* individual data sets that are included in the collection by */
/* repeating the 3 lines for the DATA_SET_COLL_ASSOC_DATA_SETS */
/* object. Identify each data set collection reference by */
/* repeating the 3 lines for the DATA_SET_COLL_REF_INFO object. */
/* Also complete a separate REFERENCE template for each new */
/* reference submitted to PDS. */

/* Hierarchy: DATA_SET_COLLECTION */
/* DATA_SET_COLLECTION_INFO */
/* DATA_SET_COLL_ASSOC_DATA_SETS */
/* DATA_SET_COLLECTION_REF_INFO */

Appendix B. Complete PDS Catalog Object Template Set B-13

OBJECT = DATA_SET_COLLECTION
DATA_SET_COLLECTION_ID = “PREMGN-E/L/H/M/V-4/5-RAD/GRAV-V1.0”

OBJECT = DATA_SET_COLLECTION_INFO
DATA_SET_COLLECTION_NAME = “PRE-MGN E/L/H/M/V 4/5 RADAR/GRAVITY DATA V1.0”
DATA_SETS = 15
START_TIME = 1968-11-09T00:00:00
STOP_TIME = 1988-07-27T00:00:00
DATA_SET_COLLECTION_RELEASE_DT = 1990-06-15
PRODUCER_FULL_NAME = “RAYMOND E. ARVIDSON”
DATA_SET_COLLECTION_DESC = “

Data Set Collection Overview
This entity is a collection of selected Earth-based radar data of Venus, the Moon, Mercury, and Mars, Pioneer Venus radar
data, airborne radar images of Earth, and line of sight acceleration data derived from tracking the Pioneer Venus Orbiter
and Viking Orbiter 2. Included are 12.6 centimeter wavelength Arecibo Venus radar images, 12.6 to 12.9cm Goldstone
Venus radar images and altimetry data, together with altimetry, brightness temperature, Fresnel reflectivity and rms slopes
derived from the Pioneer Venus Radar Mapper. For the Moon, Haystack 3.8 centimeter radar images and Arecibo 12.6
and70 centimeter radar images are included. Mars data include Goldstone altimetry data acquired between 1971 and 1982
and araster data set containing radar units that model Goldstone and Arecibo backscatter observations. Mercury data
consist of Goldstone altimetry files. The terrestrial data were acquired over the Pisgah lava flows and the Kelso dune field
in the Mojave Desert, California, and consist of multiple frequency, multiple incidence angle views of the same regions.
Data set documentation is provided, with references that allow the reader to reconstruct processing histories. The entire
data set collection and documentation are available on a CD-ROM entitled Pre-Magellan Radar and Gravity Data.”

DATA_SET_COLLECTION_USAGE_DESC = “

Data Set Collection Usage Overview
The intent of the data set collection is to provide the planetary science community with radar and gravity data similar to
the kinds of data that Magellan will begin collecting in the summer of 1990. The data set collection will be used for pre-
Magellan analyses of Venus and for comparisons to actual Magellan data. The entire data set collection and
documentation are available on a CD-ROM entitled Pre-Magellan Radar and Gravity Data. A list of the hardware and
software that may be used to read this CD-ROM can be obtained from the PDS Geosciences Discipline Node.”

END_OBJECT = DATA_SET_COLLECTION_INFO

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “NDC8-E-ASAR-4-RADAR-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB-L-RTLS-5-12.6CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB-L-RTLS-4-70CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB-V-RTLS-4-12.6CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB-L-RTLS-3-70CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “GSSR-M-RTLS-5-ALT-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

B-14 Appendix B. Complete PDS Catalog Object Template Set

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “GSSR-H-RTLS-4-ALT-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “GSSR-V-RTLS-5-12.6-9CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “HSTK-L-RTLS-4-3.8CM-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB/GSSR-M-RTLS-5-MODEL-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “P12-V-RSS-4-LOS-GRAVITY-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “P12-V-ORAD-4-ALT/RAD-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “P12-V-ORAD-5-RADAR-IMAGE-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “P12-V-ORAD-5-BACKSCATTER-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “VO2-M-RSS-4-LOS-GRAVITY-V1.0”
END_OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT = DATA_SET_COLLECTION_REF_INFO
REFERENCE_KEY_ID = ARVIDSONETAL1990A
END_OBJECT = DATA_SET_COLLECTION_REF_INFO

END_OBJECT = DATA_SET_COLLECTION
END

Appendix B. Complete PDS Catalog Object Template Set B-15

B.3 DATA SET MAP PROJECTION

The DATA SET MAP PROJECTION object is one of two distinct objects that define the map
projection used in creating the digital images in a PDS data set. The other associated object that
completes the definition is the IMAGE MAP PROJECTION, which is fully described in Appendix
A of this document.

The map projection information resides in these two objects essentially to reduce data redundancy
and at the same time allow the inclusion of elements needed to process the data at the image level.
Static information that is applicable to the complete data set reside in the
DATA_SET_MAP_PROJECTION object while dynamic information that is applicable to the
individual images reside in the IMAGE_MAP_PROJECTION object.

(1) The DATA_SET_MAP_PROJECTION catalog object unambiguously defines map
projection of an image data set.

Under MAP_PROJECTION_DESC =

Map Projection Overview
A description of the map projection of the data set, indicating mathematical expressions
used for latitude/longitude or line/sample transformations, line and sample projection
offsets, center longitudes, etc., as well as any assumptions made in processing. (These
categories of description may be subheadings indicated by single-underlining.)

Under ROTATIONAL_ELEMENT_DESCRIPTION_DESC =

Rotational Element Overview
A description of the standard used for the definition of a planet’s pole orientation and prime
meridian, right ascension and declination, spin angle, etc. (Please see the Planetary Science
Data Dictionary for complete description.).

NOTE: The value in this field may also be a bibliographic citation to a published work
containing the rotation element description. In this case there would be no need to have the
‘Overview’ heading. Please see the example provided below.

(2) The REFERENCE object provides citations of papers, articles, and other published and
unpublished works pertinent to the data set map projection.

B-16 Appendix B. Complete PDS Catalog Object Template Set

Example

CCSD3ZF0000100000001NJPL3IF0PDSX00000001

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = “RSIMPSON, 1998-07-01”
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 80

SPACECRAFT_NAME = MAGELLAN
TARGET_NAME = VENUS

OBJECT = DATA_SET_MAP_PROJECTION
DATA_SET_ID = "MGN-V-RDRS-5-DIM-V1.0"

OBJECT = DATA_SET_MAP_PROJECTION_INFO
MAP_PROJECTION_TYPE = "SINUSOIDAL"
MAP_PROJECTION_DESC = "

Map Projection Overview
The FMAP (Magellan Full Resolution Radar Mosaic) is presented in a Sinusoidal Equal-Area map projection. In this
projection, parallels of latitude are straight lines, with constant distances between equal latitude intervals. Lines of
constant longitude on either side of the projection meridian are curved since longitude intervals decrease with the cosine
of latitude to account for their convergence toward the poles. This projection offers a number of advantages for storing
and managing global digital data; in particular, it is computationally simple, and data are stored in a compact form.

The Sinusoidal Equal-Area projection is characterized by a projection longitude, which is the center meridian of the
projection, and a scale, which is given in units of pixels/degree. The center latitude for all FMAP's is the equator. Each
FMAP contains its own central meridian. The tiles that make up an FMAP all have the same central meridian as the
FMAP.

Lat/Lon, Line/Sample Transformations
The transformation from latitude and longitude to line and sample is given by the following equations:

line = INT(LINE_PROJECTION_OFFSET - lat*MAP_RESOLUTION + 1.0)

sample = INT(SAMPLE_PROJECTION_OFFSET - (lon -
CENTER_LONGITUDE)*MAP_RESOLUTION*cos(lat) + 1.0)

Note that integral values of line and sample correspond to center of a pixel. Lat and lon are the latitude and longitude
of a given spot on the surface.

Line Projection Offset
LINE_PROJECTION_OFFSET is the line number minus one on which the map projection origin occurs. The map
projection origin is the intersection of the equator and the projection longitude. The value of
LINE_PROJECTION_OFFSET is positive for images starting north of the equator and is negative for images
starting south of the equator.

Sample Projection Offset
SAMPLE_PROJECTION_OFFSET is the nearest sample number to the left of the projection longitude. The value
of SAMPLE_PROJECTION_OFFSET is positive for images starting to the west of the projection longitude and is
negative for images starting to the east of the projection longitude.

Appendix B. Complete PDS Catalog Object Template Set B-17

Center Longitude
CENTER_LONGITUDE is the value of the projection longitude,which is the longitude that passes through the
center of the projection.

The values for FMAP products will be 1408, 235, and 35.

There are four PDS parameters that specify the latitude and longitude boundaries of an image.
MAXIMUM_LATITUDE and MINIMUM_LATITUDE specify the latitude boundaries of the image,and
EASTERNMOST_LONGITUDE and WESTERNMOST_LONGITUDE specify the longitudinal boundaries of
the map.

Definitions of other mapping parameters can be found in the Planetary Science Data Dictionary."

ROTATIONAL_ELEMENT_DESC = "See DAVIESETAL1989."

OBJECT = DS_MAP_PROJECTION_REF_INFO
REFERENCE_KEY_ID = "DAVIESETAL1989"
END_OBJECT = DS_MAP_PROJECTION_REF_INFO

OBJECT = DS_MAP_PROJECTION_REF_INFO
REFERENCE_KEY_ID = "BATSON1987"
END_OBJECT = DS_MAP_PROJECTION_REF_INFO

OBJECT = DS_MAP_PROJECTION_REF_INFO
REFERENCE_KEY_ID = "EDWARDS1987"
END_OBJECT = DS_MAP_PROJECTION_REF_INFO

OBJECT = DS_MAP_PROJECTION_REF_INFO
REFERENCE_KEY_ID = "SNYDER&JOHN1987"
END_OBJECT = DS_MAP_PROJECTION_REF_INFO

END_OBJECT = DATA_SET_MAP_PROJECTION_INFO
END_OBJECT = DATA_SET_MAP_PROJECTION

END

B-18 Appendix B. Complete PDS Catalog Object Template Set

B.4 INSTRUMENT

The INSTRUMENT catalog object is used to submit information about an instrument to PDS.
Instruments are typically associated with a particular spacecraft or earth based host, so the
INSTRUMENT_HOST_ID keyword may identify either a valid SPACECRAFT_ID or
EARTH_BASE_ID. The catalog object includes a textual description of the instrument and a sub-
object for identifying reference information. A separate REFERENCE object will need to be
completed for any new references not already part of the PDS catalog.

(1) The INSTRUMENT INFORMATION catalog object provides a description of the
instrument. The following paragraph headings and suggested contents are strongly
recommended as the minimal set of information necessary to adequately describe an
instrument. Additional headings may be appropriate for specific instruments and these also
may be added here. Should any of the recommended headings not appear within a textual
description, they will be considered not applicable to the data set.

Instrument Overview
A high-level description of the characteristics and properties of an instrument.

Scientific Objectives
The scientific objectives of data obtained from this instrument.

Calibration
Methods/procedures/schedules of instrument calibration. Calibration stability,
parameters, etc.

Operational Considerations
Special circumstances or events that affect the instrument's ability to acquire high
quality data (which are reflected in the archive product). Examples might be
spacecraft charging, thruster firings, contamination from other instruments, air
quality, temperatures, etc.

Detectors
General description of detector(s). Type of detector used. Sensitivity and noise
levels. Detector fields of view, geometric factors, etc. Instrument/detector
mounting descriptions (offset angles, pointing positions, etc.)

Electronics
Description of the instrument electronics and internal data processing (A-D
converter).

Filters
Description of instrument filters and filter calibrations (filter type, center
wavelength, min/max wavelength) if applicable.

Appendix B. Complete PDS Catalog Object Template Set B-19

Optics
Description of instrument optics (focal lengths, transmittance, diameter, resolution,
t_number, etc.) if applicable.

Location
Latitude and longitude location, for earth based instruments.

Operational Modes
Description of instrument configurations for data acquisitions. Description of
“modes” (scan, gain, etc.) of data acquisition and of measured parameter(s) and/or
data sampling rates or schemes used in each mode.

Subsystems
Logical subsystems of the instrument. Description of each subsystem, how it's used,
which “modes” make use of which subsystem, etc.

Measured Parameters
Description of what the instrument directly measures (particle counts, magnetic
field components, radiance, current/voltage ratios, etc.) Description and definition
of these measurements (min/max, noise levels, units, time interval between
measurements, etc.)

(OTHER - Data Supplier provided):
Any other important information in additional headings as desired (e.g. Data
Reduction, Data Compression, Time-Tagging, Diagnostics, etc.)

(2) The INSTRUMENT REFERENCE INFO catalog object associates a reference with the
instrument description. It is repeated for each reference identified for the instrument. A
separate REFERENCE template is completed to provide the associated reference citation
for each reference.

Include any important references such as instrument description and calibration documents.
These can be both published and internal documents or informal memoranda.

Example:

/* Template: Instrument Template Rev: 1993-09-24 */

/* Note: Complete one template for each instrument. Identify each */
/* instrument reference by repeating the 3 lines for the */
/* INSTRUMENT_REFERENCE_INFO object. Also complete a separate */
/* REFERENCE template for each new reference submitted to PDS. */

/* Hierarchy: INSTRUMENT */
/* INSTRUMENT_INFORMATION */
/* INSTRUMENT_REFERENCE_INFO */

CCSD3ZF0000100000001NJPL3IF0PDSX00000001

B-20 Appendix B. Complete PDS Catalog Object Template Set

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = “RSIMPSON, 1998-07-01”
RECORD_TYPE = STREAM

OBJECT = INSTRUMENT
INSTRUMENT_HOST_ID = “MGN”
INSTRUMENT_ID = “RDRS”

OBJECT = INSTRUMENT_INFORMATION
INSTRUMENT_NAME = “RADAR SYSTEM”
INSTRUMENT_TYPE = “RADAR”
INSTRUMENT_DESC = “

Instrument Overview
The Magellan radar system included a 3.7 m diameter high gain antenna (HGA) for SAR and radiometry and a smaller
fan-beam antenna (ALTA) for altimetry. The system operated at 12.6 cm wavelength. Common electronics were used in
SAR, altimetry, and radiometry modes. The SAR operated in a burst mode; altimetry and radiometry observations were
interleaved with the SAR bursts.

Radiometry data were obtained by spending a portion of the time between SAR bursts and after altimeter operation in a
passive (receive-only) mode, with the HGA antenna capturing the microwave thermal emission from the planet. Noise
power within the 10-MHz receiver bandwidth was detected and accumulated for50 ms. To reduce the sensitivity to
receiver gain changes in this mode, the receiver was connected on alternate bursts first to a comparison dummy load at a
known physical temperature and then to the HGA. The short-term temperature resolution was about 2 K; the long-term
absolute accuracy after calibration was about 20 K.

The radar was manufactured by Hughes Aircraft Company and the 'build date' is taken to be 1989-01-01. The radar
dimensions were 0.304 by 1.35 by 0.902 (height by length by width in meters) and the mass was 126.1 kg.

Instrument Id : RDRS
Instrument Host Id : MGN
Pi PDS User Id : GPETTENGILL
Instrument Name : RADAR SYSTEM
Instrument Type : RADAR
Build Date : 1989-01-01
Instrument Mass : 126.100000
Instrument Length : 1.350000
Instrument Width : 0.902000
Instrument Height : 0.304000
Instrument Manufacturer Name : HUGHES AIRCRAFT

Platform Mounting Descriptions
The spacecraft +Z axis vector was in the nominal direction of the HGA boresight. The +X axis vector was parallel
to the nominal rotation axis of the solar panels. The +Y axis vector formed a right-handed coordinate system and
was in the nominal direction of the star scanner boresight. The spacecraft velocity vector was in approximately the
-Y direction when the spacecraft was oriented for left-looking SAR operation. The nominal HGA polarization was
linear in the y-direction.

Cone Offset Angle: 0.00
Cross Cone Offset Angle: 0.00
Twist Offset Angle: 0.00

The altimetry antenna boresight was in the x-z plane 25 degrees from the +Z direction and 65 degrees from the +X
direction. The altimetry antenna was aimed approximately toward nadir during nominal radar operation. The
altimetry antenna polarization was linear in the y-direction.

The medium gain antenna boresight was 70 degrees from the +Z direction and 20 degrees from the -Y direction. The
low gain antenna was mounted on the back of the HGA feed; it's boresight was in the +Z direction and it had a
hemispherical radiation pattern.

Appendix B. Complete PDS Catalog Object Template Set B-21

Principal Investigator
The Principal Investigator for the radar instrument was Gordon H. Pettengill.

For more information on the radar system see the papers by [JOHNSON1990] and [SAUNDERSETAL1990].

Scientific Objectives
See MISSION_OBJECTIVES_SUMMARY under MISSION.

Operational Considerations
The Magellan radar system was used to acquire radar back-scatter(SAR) images, altimetry, and radiometry when the
spacecraft was close to the planet. Nominal operation extended from about 20minutes before periapsis until about 20
minutes after periapsis.In the SAR mode output from the radar receiver was sampled, blocks of samples were quantized
using an adaptive procedure, and the results were stored on tape. In the altimetry mode samples were recorded directly,
without quantization. Radiometry measurements were stored in the radar header records. During most of the remainder
of each orbit, the HGA was pointed toward Earth and the contents of the tape recorder were transmitted to a station of the
DSN at approximately 270 kilobits/second. SAR, altimetry, and radiometry data were then processed using ground
software into images, altimetry profiles, estimates of backscatter coefficient, emissivity, and other quantities.

Calibration
The radar was calibrated before flight using an active electronic target simulator [CUEVAS1989].

Operational Modes
The Magellan radar system consisted of the following sections, each of which operated in the following modes:

Section Mode
SAR Synthetic Aperture Radar (SAR)
ALT Altimetry
RAD Radiometry

(1) SAR Characteristics
In the Synthetic Aperture Radar mode, the radar transmitted bursts of phase-modulated pulses through its high gain
antenna. Echo signals were captured by the antenna, simple dat the receiver output, and stored on tape after being
quantized to reduce data volume. Pulse repetition rate and incidence angle were chosen to meet a minimum signal-
to-noise ratio requirement (8 dB) for image pixels after ground processing. Multiple looks were used in processing
to reduce speckle noise. Incidence angles varied from about 13 degree sat the pole to about 44 degrees at periapsis
during normal mapping operations (e.g., Cycle 1); but other 'look angle profiles' were used during the mission.

Peak transmit power : 350 watts
Transmitted pulse length : 26.5 microsecs
Pulse repetition frequency : 4400-5800 per sec
Time bandwidth product : 60
Inverse baud width : 2.26 MHz
Data quantization (I and Q) : 2 bits each
Recorded data rate : 750 kilobits/sec
Polarization (nominal) : linear horizontal
HGA half-power full beam width : 2.2 deg (azimuth)

: 2.5 deg (elev)
one-way gain (from SAR RF port) : 35.7
dBi System temperature (viewing Venus) : 1250 K
Surface resolution (range) : 120-360 m
(along track) : 120-150 m
Number of looks : 4 or more
Swath width : 25 km (approx)

B-22 Appendix B. Complete PDS Catalog Object Template Set

Antenna look angle : 13-47 deg
Incidence angle on surface : 18-50 deg

Data Path Type : RECORDED DATA
PLAYBACK Instrument Power Consumption : UNK

(2) ALT Characteristics
After SAR bursts (typically several times a second) groups of altimeter pulses were transmitted from a dedicated
fan beam altimeter antenna (ALTA) directed toward the spacecraft's nadir. Output from the radar receiver was
sampled, and the samples were stored on tape for transmission to Earth. During nominal left-looking SAR operation
the ALTA pointed approximately 20 deg to the left of the spacecraft ground track at periapsis and about 10 deg to
the right of the ground track near the north and south pole.

Data quantization (I and Q) : 4 bits each
Recorded data rate : 35 kbs
Polarization : linear
ALTA half-power full beam width
(along track) : 11 deg
(cross track) : 31 deg
one-way gain referenced to ALT RF port : 18.9
dBi ALTA offset from HGA : 25 deg
Burst interval : 0.5-1.0 sec
duration : 1.0 millisec
Dynamic range : 30 dB (or more)

Data Path Type : RECORDED DATA
PLAYBACK Instrument Power Consumption : UNK

(3) RAD Characteristics
Radiometry measurements were made by the radar receiver and HGA in a receive-only mode that was activated after
the altimetry mode to record the level of microwave radio thermale mission from the planet. Noise power within the
10-MHz receiver bandwidth was detected and accumulated for 50 ms. To reduce the sensitivity to receiver gain
changes in this mode, the receiver was connected on alternate bursts first to a comparison dummy load at a known
physical temperature and then to the HGA. The short-term temperature resolution was about 2K; the long-term
absolute accuracy after calibration was about20 K. At several times during the mission, radiometry measurements
were carried out using known cosmic radio sources.

Receiver Bandwidth : 10 MHz
Integration Time : 50 millisecs
Polarization (nominal) : linear horizontal
Data Quantization : 12 bits
Data Rate : 10-48 bits/sec
HGA half-power full beam width : 2.2 deg
System temperature (viewing Venus) : 1250 K
Antenna look angle : 13-47 deg
Incidence angle on surface : 18-50 deg
Surface resolution (along track) : 15-120 km
(cross track) : 20-125 km

Data Path Type : RECORDED DATA PLAYBACK
Instrument Power Consumption : UNK ”

END_OBJECT = INSTRUMENT_INFORMATION

OBJECT = INSTRUMENT_REFERENCE_INFO
REFERENCE_KEY_ID = “CUEVAS1989”
END_OBJECT = INSTRUMENT_REFERENCE_INFO

Appendix B. Complete PDS Catalog Object Template Set B-23

OBJECT = INSTRUMENT_REFERENCE_INFO
REFERENCE_KEY_ID = “JOHNSON1990”
END_OBJECT = INSTRUMENT_REFERENCE_INFO

OBJECT = INSTRUMENT_REFERENCE_INFO
REFERENCE_KEY_ID = “SAUNDERSETAL1990”
END_OBJECT = INSTRUMENT_REFERENCE_INFO

END_OBJECT = INSTRUMENT

END

B-24 Appendix B. Complete PDS Catalog Object Template Set

B.5 INSTRUMENT HOST

The INSTRUMENT HOST catalog object is used to describe a variety of instrument hosts, such
as a spacecraft or an earth based observatory.

(1) The INSTRUMENT HOST INFORMATION catalog object provides a textual description
that may be used to describe any important information about an instrument host. For
spacecraft, this typically includes paragraphs on the various subsystems. Earthbased
instrument host descriptions may focus on geographic and facility elements.

Instrument Host Overview
A high-level description of the characteristics and properties of the instrument host.

(2) The INSTRUMENT HOST REFERENCE INFO catalog object is completed for each
reference associated with the host. If there is more than one reference, this object is
repeated. A separate REFERENCE template is completed to provide the proper citation for
each reference.

Example:

/* Template: Instrument Host Template Rev: 1993-09-24 */

/* Note: Complete one template for each instrument host. Identify each */
/* instrument host reference by repeating the 3 lines for the */
/* INSTRUMENT_HOST_REFERENCE_INFO object. Also complete a separate */
/* REFERENCE template for each new reference submitted to PDS. */

/* Hierarchy: INSTRUMENT_HOST */
/* INSTRUMENT_HOST_INFORMATION */
/* INSTRUMENT_HOST_REFERENCE_INFO */

CCSD3ZF0000100000001NJPL3IF0PDSX00000001

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = “RSIMPSON, 1998-07-01”
RECORD_TYPE = “STREAM”

OBJECT = INSTRUMENT_HOST
INSTRUMENT_HOST_ID = “MGN”

OBJECT = INSTRUMENT_HOST_INFORMATION
INSTRUMENT_HOST_NAME = “MAGELLAN”
INSTRUMENT_HOST_TYPE = “SPACECRAFT”
INSTRUMENT_HOST_DESC = “

Instrument Host Overview
The Magellan spacecraft was built by the Martin Marietta Corporation. The spacecraft structure included four major
sections: High-Gain Antenna (HGA), Forward Equipment Module (FEM), Spacecraft Bus (including the solar array), and
the Orbit Insertion Stage. Spacecraft subsystems included those for thermal control, power, attitude control, propulsion,
command data and data storage, and telecommunications.

The Magellan telecommunications subsystem contained all the hardware necessary to maintain communications between

Appendix B. Complete PDS Catalog Object Template Set B-25

Earth and the spacecraft. The subsystem contained the radio frequency subsystem, the LGA, MGA, and HGA. The RFS
performed the functions of carrier transponding, command detection and decoding, and telemetry modulation. The
spacecraft was capable of simultaneous X-band and S-band uplink and downlink operations. The S-band operated at a
transmitter power of 5 W, while the X-band operated at a power of 22 W. Uplink data rates were 31.25 and 62.5 bps (bits
per second) with downlink data rates of 40 bps (emergency only), 1200 bps (real-time engineering rate), 115.2 kbps
(kilobits per second) (radar down link backup), and 268.8 kbps (nominal).

For more information on the Magellan spacecraft see the papers by [SAUNDERSETAL1990] and
[SAUNDERSETAL1992]. ”

END_OBJECT = INSTRUMENT_HOST_INFORMATION

OBJECT = INSTRUMENT_HOST_REFERENCE_INFO
REFERENCE_KEY_ID = “SAUNDERSETAL1990”
END_OBJECT = INSTRUMENT_HOST_REFERENCE_INFO

OBJECT = INSTRUMENT_HOST_REFERENCE_INFO
REFERENCE_KEY_ID = “SAUNDERSETAL1992”
END_OBJECT = INSTRUMENT_HOST_REFERENCE_INFO

END_OBJECT = INSTRUMENT_HOST
END

B-26 Appendix B. Complete PDS Catalog Object Template Set

B.6 INVENTORY

The INVENTORY catalog object shall be completed once for each node that is responsible for
orderable data sets from the PDS catalog. This object provides the inventory information necessary
to facilitate the ordering of these data sets.

(1) The INVENTORY DATA SET INFO catalog object identifies a product through the
product data set id. This object is repeated for each orderable and cataloged PDS data set.

(2) The INVENTORY NODE MEDIA INFO catalog object provides information about data
set distribution medium. This object is repeated for each type of distribution medium.

Example:

/* Template: InventoryTemplate Rev: 1990-03-20 */

/* Note: The INVENTORY template shall be completed once for each node that is responsible */
/* for orderable data sets from the PDS catalog. The following hierarchy of templates provide */
/* the necessary inventory information which will facilitate the ordering of these data sets. */

/* Hierarchy: INVENTORY */
/* INVENTORY_DATA_SET_INFO */
/* INVENTORY_NODE_MEDIA_INFO */

OBJECT = INVENTORY
NODE_ID = “IMAGING”

OBJECT = INVENTORY_DATA_SET_INFO
PRODUCT_DATA_SET_ID = “VG2-N-ISS-2-EDR-V1.0”

OBJECT = INVENTORY_NODE_MEDIA_INFO
MEDIUM_TYPE = “MAG TAPE”
MEDIUM_DESC = “INDUSTRY STD 1/2IN;1600 OR 6250 BPI”
COPIES = 1
INVENTORY_SPECIAL_ORDER_NOTE = “Not applicable.”
END_OBJECT = INVENTORY_NODE_MEDIA_INFO

OBJECT = INVENTORY_NODE_MEDIA_INFO
MEDIUM_TYPE = “CD-ROM”
MEDIUM_DESC = “Compact Disk”
COPIES = 1
INVENTORY_SPECIAL_ORDER_NOTE = “Not applicable.”
END_OBJECT = INVENTORY_NODE_MEDIA_INFO

END_OBJECT = INVENTORY_DATA_SET_INFO
END_OBJECT = INVENTORY

OBJECT = INVENTORY
NODE_ID = “NSSDC”

OBJECT = INVENTORY_DATA_SET_INFO
PRODUCT_DATA_SET_ID = “VG2-N-ISS-2-EDR-V1.0”

Appendix B. Complete PDS Catalog Object Template Set B-27

OBJECT = INVENTORY_NODE_MEDIA_INFO
MEDIUM_TYPE = “CD-ROM”
MEDIUM_DESC = “Compact Disk”
COPIES = 1
INVENTORY_SPECIAL_ORDER_NOTE = “Not applicable.”
END_OBJECT = INVENTORY_NODE_MEDIA_INFO

END_OBJECT = INVENTORY_DATA_SET_INFO
END_OBJECT = INVENTORY
END

B-28 Appendix B. Complete PDS Catalog Object Template Set

B.7 MISSION

The MISSION catalog object is used to submit information about a mission or campaign to PDS.
Sub-objects are included for identifying associated instrument hosts, targets, and references. A
separate REFERENCE object will need to be completed for any new references not already a part
of the PDS catalog.

(1) The MISSION INFORMATION catalog object provides start and stop times and textual
descriptions, MISSION_DESC and MISSION_OBJECTIVES_SUMMARY. Suggested
contents include agency involvement, spacecraft/observatory utilized, mission scenario
including phases, technology and scientific objectives.

Under MISSION_DESC =

Mission Overview
A high-level description of a mission.

Mission Phases
A description of each phase of a mission, starting with the pre-launch phase and
continuing through end-of-mission. This includes start and stop times of each phase,
intended operations, targets, and mission phase objectives.

Under MISSION_OBJECTIVES_SUMMARY =

Mission Objectives Overview
A high-level description of the objectives of the mission.

(2) The MISSION HOST catalog object is completed for each instrument host associated with
the mission or campaign. If there is more than one instrument host involved in the mission,
this object is repeated.

(3) The MISSION TARGET catalog object is completed for each target associated with an
instrument host. If there is more than one target for a given host, this object is repeated.

(4) The MISSION REFERENCE INFORMATION catalog object is completed for each
reference associated with the mission. If there is more than one reference, this object is
repeated. A separate REFERENCE template is completed to provide the proper citation for
each reference.

Appendix B. Complete PDS Catalog Object Template Set B-29

Example:

/* Template: Mission Template Rev: 1993-09-24 */

/* Note: Complete one template for each mission or campaign. Identify */
/* multiple hosts associated with the mission by repeating the */
/* lines beginning and ending with the MISSION_HOST values. For */
/* each instrument_host identified, repeat the 3 lines for the */
/* MISSION_TARGET object for each target associated with the host. */
/* Also complete a separate REFERENCE template for each new */
/* reference submitted to PDS. */

/* Hierarchy: MISSION */
/* MISSION_INFORMATION */
/* MISSION_HOST */
/* MISSION_TARGET */
/* MISSION_REFERENCE_INFORMATION */

CCSD3ZF0000100000001NJPL3IF0PDSX00000001

PDS_VERSION_ID = PDS3
LABEL_REVISION_NOTE = “RSIMPSON, 1998-07-01”
RECORD_TYPE = STREAM

OBJECT = MISSION
MISSION_NAME = “MAGELLAN”

OBJECT = MISSION_INFORMATION
MISSION_START_DATE = 1989-05-04
MISSION_STOP_DATE = UNK
MISSION_ALIAS_NAME = “Venus Radar Mapper (VRM)”
MISSION_DESC= “

Mission Overview
The Magellan spacecraft was launched from the Kennedy Space Center on 4 May 1989. The spacecraft was deployed
from the Shuttle cargo bay after the Shuttle achieved parking orbit.Magellan, using an inertial upper stage rocket, was
then placed into a Type IV transfer orbit to Venus where it carried out radar mapping and gravity studies starting in August
1990. The Mission has been described in many papers including two special issues of the Journal of Geophysical Research
[VRMPP1983;SAUNDERSETAL1990; JGRMGN1992]. The radar system is also described in [JOHNSON1990].

The aerobraking phase of the mission was designed to change the Magellan orbit from eccentric to nearly circular. This
was accomplished by dropping periapsis to less than 150 km above the surface and using atmospheric drag to reduce the
energy in the orbit. Aerobraking ended on 3 August 1993, and periapsis was boosted above the atmosphere leaving the
spacecraft in an orbit that was 540 km above the surface at apoapsis and 197 km above the surface at periapsis. The orbit
period was 94 minutes. The spacecraft remained on its medium-gain antenna in this orbit until Cycle 5 began officially
on 16 August 1993.

During Cycles 5 and 6 the orbit was low and approximately circular. The emphasis was on collecting high-resolution
gravity data. Two bistatic surface scattering experiments were conducted, one on 6 October (orbits 9331, 9335, and 9336)
and the second on 9 November (orbits 9846-9848).

Mission Phases
Mission phases were defined for significant spacecraft activity periods. During orbital operations a ‘cycle’ was
approximately the time required for Venus to rotate once under the spacecraft (about 243 days). But there were orbit
adjustments and other activities that made some mapping cycles not strictly contiguous and slightly longer or shorter than
the rotation period.

B-30 Appendix B. Complete PDS Catalog Object Template Set

PRELAUNCH
The prelaunch phase extended from delivery of the spacecraft to Kennedy Space Center until the start of the launch
countdown.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1988-09-01
Mission Phase Stop Time : 1989-05-04
Spacecraft Operations Type : ORBITER

LAUNCH
The launch phase extended from the start of launch countdown until completion of the injection into the Earth-
Venus trajectory.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1989-05-04
Mission Phase Stop Time : 1989-05-04
Spacecraft Operations Type : ORBITER

CRUISE
The cruise phase extended from injection into the Earth-Venus trajectory until 10 days before Venus orbit insertion.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1989-05-04
Mission Phase Stop Time : 1990-08-01
Spacecraft Operations Type : ORBITER

ORBIT INSERTION
The Venus orbit insertion phase extended from 10 days before Venus orbit insertion until burnout of the solid rocket
injection motor.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1990-08-01
Mission Phase Stop Time : 1990-08-10
Spacecraft Operations Type : ORBITER

ORBIT CHECKOUT
The orbit trim and checkout phase extended from burnout of the solid rocket injection motor until the beginning of
radar mapping.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1990-08-10
Mission Phase Stop Time : 1990-09-15
Spacecraft Operations Type : ORBITER

MAPPING CYCLE 1
The first mapping cycle extended from completion of the orbit trim and checkout phase until completion of one
cycle of radar mapping (approximately 243 days).

Appendix B. Complete PDS Catalog Object Template Set B-31

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1990-09-15
Mission Phase Stop Time : 1991-05-15
Spacecraft Operations Type : ORBITER

MAPPING CYCLE 2
The second mapping cycle extended from completion of the first mapping cycle through an additional cycle of
mapping.Acquisition of 'right-looking' SAR data was emphasized. Radio occultation measurements were carried out
on orbits 3212-3214.A period of battery reconditioning followed completion of Cycle 2.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1991-05-16
Mission Phase Stop Time : 1992-01-17
Spacecraft Operations Type : ORBITER

MAPPING CYCLE 3
The third mapping cycle extended from completion of battery reconditioning through an additional cycle of
mapping (approximately 243 days). Acquisition of 'stereo' SAR data was emphasized. The last orbit in the third
cycle was orbit5747.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1992-01-24
Mission Phase Stop Time : 1992-09-14
Spacecraft Operations Type : ORBITER

MAPPING CYCLE 4
The fourth mapping cycle extended from completion of the third mapping cycle through an additional cycle of
mapping. Acquisition of radio tracking data for gravity studies was emphasized. Radio occultation measurements
were carried out on orbits 6369, 6370, 6471, and 6472. Because of poor observing geometry for gravity data
collection at the beginning of the cycle, this cycle was extended 10 days beyond the nominal 243 days. Orbits
included within the fourth cycle were 5748 through 7626. Periapsis was lowered on orbit 5752to improve sensitivity
to gravity features in Cycle 4.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1992-09-14
Mission Phase Stop Time : 1993-05-25
Spacecraft Operations Type : ORBITER

AEROBRAKING
The aerobraking phase extended from completion of the fourth mapping cycle through achievement of a near-
circular orbit.Circularization was achieved more quickly than expected; the first gravity data collection in the
circular orbit was not scheduled until 11 days later. Orbits included within the aerobraking phase were 7627 through
8392.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1993-05-26
Mission Phase Stop Time : 1993-08-05
Spacecraft Operations Type : ORBITER

B-32 Appendix B. Complete PDS Catalog Object Template Set

MAPPING CYCLE 5
The fifth mapping cycle extended from completion of the aerobraking phase through an additional cycle of mapping
(approximately 243 days). Acquisition of radio tracking data for gravity studies was emphasized. The first orbit in
the fifth cycle was orbit 8393.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1993-08-16
Mission Phase Stop Time : 1994-04-15
Spacecraft Operations Type : ORBITER

MAPPING CYCLE 6
The sixth mapping cycle extended from completion of the fifth mapping cycle through an additional cycle of
mapping (approximately 243 days). Acquisition of radio tracking data for gravity studies was emphasized. The first
orbit in the sixth cycle was orbit 12249.

Spacecraft Id : MGN
Target Name : VENUS
Mission Phase Start Time : 1994-04-16
Mission Phase Stop Time : TBD
Spacecraft Operations Type : ORBITER”

MISSION_OBJECTIVES_SUMMARY = “

Mission Objectives Overview

Volcanic and Tectonic Processes
Magellan images of the Venus surface show widespread evidence for volcanic activity. A major goal of the
Magellan mission was to provide a detailed global characterization of volcanic land forms on Venus and an
understanding of the mechanics of volcanism in the Venus context. Of particular interest was the role of volcanism
in transporting heat through the lithosphere.While this goal will largely be accomplished by a careful analysis of
images of volcanic features and of the geological relationships of these features to tectonic and impact structures,
an essential aspect of characterization will be an integration of image data with altimetry and other measurements
of surface properties....

For more information on volcanic and tectonic investigations see papers by [HEADETAL1992] and
[SOLOMONETAL1992], respectively.

Impact Processes
The final physical form of an impact crater has meaning only when the effects of the cratering event and any
subsequent modification of the crater can be distinguished. To this end, a careful search of the SAR images can
identify and characterize both relatively pristine and degraded impact craters, together with their ejecta deposits (in
each size range) as well as distinguishing impact craters from those of volcanic origin.The topographic measures of
depth-to-diameter ratio, ejecta thickness distribution as a function of distance from the crater, and the relief of
central peaks contribute to this documentation.
.
For more information on investigations of impact processes see[SCHABERETAL1992].

Erosional, Depositional, and Chemical Processes
The nature of erosional and depositional processes on Venus is poorly known, primarily because the diagnostic
landforms typically occur at a scale too small to have been resolved in Earth-based or Venera 15/16 radar images.
Magellan images show wind eroded terrains, landforms produced by deposition (dunefields), possible landslides
and other down slope movements, as well as aeolian features such as radar bright or dark streaks 'downwind' from
prominent topographic anomalies. One measure of weathering, erosion, and deposition is provided by the extent to
which soil covers the surface (for Venus, the term soil is used for porous material, as implied by its relatively low
value of bulk dielectric constant). The existence of such material, and its dependence on elevation and geologic
setting, provide important insights into the interactions that have taken place between the atmosphere and the
lithosphere.

Appendix B. Complete PDS Catalog Object Template Set B-33

.
For more information on erosional, depositional, and chemical processes see papers by [ARVIDSONETAL1992],
[GREELEYETAL1992],and [GREELEYETAL1994].

Isostatic and Convective Processes
Topography and gravity are intimately and inextricably related, and must be jointly examined when undertaking
geophysical investigations of the interior of a planet, where isostatic and convective processes dominate.
Topography provides a surface boundary condition for modeling the interior density of Venus.

For more information on topography and gravity see papers by[FORD&PETTENGILL1992],
[KONOPLIVETAL1993], and[MCNAMEEETAL1993]. ”

END_OBJECT = MISSION_INFORMATION

OBJECT = MISSION_HOST
INSTRUMENT_HOST_ID = “MGN”

OBJECT = MISSION_TARGET
TARGET_NAME = “VENUS”
END_OBJECT = MISSION_TARGET
END_OBJECT = MISSION_HOST

OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “ARVIDSON1991”
END_OBJECT = MISSION_REFERENCE_INFORMATION

OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “ARVIDSONETAL1992”
END_OBJECT = MISSION_REFERENCE_INFORMATION

OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “CAMPBELLETAL1992”
END_OBJECT = MISSION_REFERENCE_INFORMATION

.

.

.
OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “TYLER1992”
END_OBJECT = MISSION_REFERENCE_INFORMATION

OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “VRMPP1983”
END_OBJECT = MISSION_REFERENCE_INFORMATION

END_OBJECT = MISSION
END

B-34 Appendix B. Complete PDS Catalog Object Template Set

B.8 PERSONNEL

The PERSONNEL catalog object is used to provide new or updated information for personnel
associated with PDS in some capacity. This includes data suppliers and producers for data sets or
volumes archived with PDS, as well as PDS node personnel and contacts within other agencies and
institutions.

(1) The PERSONNEL INFORMATION catalog object provides name, address,
telephone, and related information.

(2) The PERSONNEL ELECTRONIC MAIL catalog object provides electronic
mail information for personnel. This object may be repeated if more than one electronic
mail address is applicable.

Example

/* Template: Personnel Template Rev: 1993-09-24 */

/* Note: Complete one for each new PDS user, data supplier, or data */
/* producer. If more than one electronic mail address is available */
/* repeat the lines for the PERSONNEL_ELECTRONIC_MAIL object. */

/* Hierarchy: PERSONNEL */
/* PERSONNEL_INFORMATION */
/* PERSONNEL_ELECTRONIC_MAIL */

OBJECT = PERSONNEL
RECORD_TYPE = STREAM

PDS_USER_ID = PFORD

OBJECT = PERSONNEL_INFORMATION
FULL_NAME = “PETER G. FORD”
LAST_NAME = FORD
TELEPHONE_NUMBER = “6172536485”
ALTERNATE_TELEPHONE_NUMBER = “6172534287”
FAX_NUMBER = “6172530861”
INSTITUTION_NAME = “MASSACHUSETTS INSTITUTE OF TECHNOLOGY”
NODE_ID = “GEOSCIENCE”
PDS_AFFILIATION = “NODE OPERATIONS MANAGER”
PDS_ADDRESS_BOOK_FLAG = Y
REGISTRATION_DATE = 1990-02-06
ADDRESS_TEXT = “Massachusetts Institute of Technology \n

Center for Space Research Building 37-601Cambridge, MA 02139"
END_OBJECT = PERSONNEL_INFORMATION

OBJECT = PERSONNEL_ELECTRONIC_MAIL
ELECTRONIC_MAIL_ID = “PGF@SPACE.MIT.EDU”
ELECTRONIC_MAIL_TYPE = “INTERNET”
PREFERENCE_ID = 1
END_OBJECT = PERSONNEL_ELECTRONIC_MAIL

OBJECT = PERSONNEL_ELECTRONIC_MAIL
ELECTRONIC_MAIL_ID = “PFORD”

Appendix B. Complete PDS Catalog Object Template Set B-35

ELECTRONIC_MAIL_TYPE = “NASAMAIL”
PREFERENCE_ID = 2
END_OBJECT = PERSONNEL_ELECTRONIC_MAIL

OBJECT = PERSONNEL_ELECTRONIC_MAIL
ELECTRONIC_MAIL_ID = “JPLPDS::PFORD”
ELECTRONIC_MAIL_TYPE = “NSI/DECNET”
PREFERENCE_ID = 3
END_OBJECT = PERSONNEL_ELECTRONIC_MAIL

END_OBJECT = PERSONNEL
END

B-36 Appendix B. Complete PDS Catalog Object Template Set

B.9 REFERENCE

The REFERENCE catalog object is completed for each reference associated with a mission,
instrument host, instrument, data set, or data set collection catalog object. Submit any important
references, including both published and unpublished internal documents or informal memoranda.
This also may include references to published data, such as PDS archive volumes. A copy of an
unpublished reference should be forwarded to the PDS node responsible for your data set archive,
whenever possible.

(1) The REFERENCE catalog object provides a reference citation and a unique
identifier for every reference associated with the PDS data archive.

Example:

/* Template: Reference Template Rev: 1993-09-24 */

/* Note: This template shall be completed for each reference associated with a mission, */
/* instrument host, instrument, data set, or data set collection template. */

OBJECT = REFERENCE
REFERENCE_KEY_ID = “GURNETTETAL1991”
REFERENCE_DESC = “Garnet, D.A., W.S. Kurth, A. Roux, R. Gendrin, C. F. Kennel, S. J.
Bolton, Lightning and Plasma Wave Observations from the Galileo Flyby of Venus, Science, 253, 1522, 1991."
END_OBJECT = REFERENCE

OBJECT = REFERENCE
REFERENCE_KEY_ID = ARVIDSONETAL1990A
REFERENCE_DESC = “Arvidson, R.E., E.A. Guinness, S.
Slavney, D. Acevedo, J. Hyon, and M. Martin, Pre-Magellan radar and gravity data, Jet Propulsion Laboratory, CDROM
(USA_NASA_JPL_MG_1001).”
END_OBJECT = REFERENCE
END

Appendix B. Complete PDS Catalog Object Template Set B-37

B.10 SOFTWARE

The SOFTWARE catalog object is completed for each software program registered in the PDS
Software Inventory. This Inventory includes software available within the Planetary Science
community, including software on PDS archive volumes. Of interest are any applications, tools, or
libraries that have proven useful for the display, analysis, formatting, transformation, or
preparation of either science data or meta-data for the PDS archives.

(1) The SOFTWARE catalog object provides general information about the software tool
including a description, availability information, and dependencies.

Example:

/* Template: Software Template Rev: 1998-12-01 */

/* Note: This template should be completed to register software in the */
/* PDS Software Inventory. */

OBJECT = SOFTWARE
SOFTWARE_ID = NASAVIEW
SOFTWARE_VERSION_ID = “V1R2B”

OBJECT = SOFTWARE_INFORMATION
SOFTWARE_NAME = "NASAVIEW - PDS DATA PRODUCT ACCESS TOOL

 V1.2B"
DATA_FORMAT = PDS
SOFTWARE_LICENSE_TYPE = PUBLIC_DOMAIN
TECHNICAL_SUPPORT_TYPE = FULL
REQUIRED_STORAGE_BYTES = “1.8MB”
PDS_USER_ID = SHUGHES
NODE_ID = CN
SOFTWARE_DESC = “

Software Overview
=============
 NasaView Version 1.2b is a PDS Image display program developed for the following platforms:

 (a) PC / Win32
(b) Unix / Sun OS

NasaView is capable of accessing and displaying all images, tables, cubes, and histograms in the PDS archive.
This release has been tested using Galileo, Magellan, Viking, MDIM, Voyager, IHW LSPN, and Clementine
uncompressed images.

NasaView is planned as a PDS data product object display utility that will run on SUN, MAC, and PC platforms
in a GUI environment.

This application was built using the Label Library Light (L3), Object Access Library (OAL), and the XVT
Development Solution for C package. Label Library Light parses PDS ODL labels and creates an in-memory
representation of the label information. The Object Access Library uses the parse-tree and accesses the actual
PDS object. The XVT Development Solution supplies the cross platform GUI and an Object-oriented
environment. XVT allows the definition of visual objects such as Windows and Menus and associates events
and code with them.

Available Support Material
===================

B-38 Appendix B. Complete PDS Catalog Object Template Set

BINARIES

Programming Language
================

SUN_C

Platforms Supported
==============

PC / Microsoft Win95, Win98, NT4.0

Support Software Required / Used
========================

X_WINDOWS

END_OBJECT = SOFTWARE_INFORMATION

OBJECT = SOFTWARE_ONLINE
ON_LINE_IDENTIFICATION = “http://pds.jpl.nasa.gov/license.html”
ON_LINE_NAME = “NASAVIEW REVISION 2 BETA”
NODE_ID = CN
PROTOCOL_TYPE = URL
PLATFORM = PC/WIN32

END_OBJECT = SOFTWARE_ONLINE

OBJECT = SOFTWARE_PURPOSE
SOFTWARE_PURPOSE = DISPLAY

END_OBJECT = SOFTWARE_PURPOSE

END_OBJECT = SOFTWARE
END

Appendix B. Complete PDS Catalog Object Template Set B-39

B.11 TARGET

The TARGET catalog object forms part of a standard set for the submission of a target to the PDS.
The TARGET object contains the following sub-objects: TARGET_INFORMATION and
TARGET_REFERENCE_INFORMATION

(1) The TARGET INFORMATION catalog object provides target physical and dynamic
parameters.

(2) The TARGET REFERENCE INFORMATION catalog object is completed for each
reference associated with the target. If there is more than one reference, this object is
repeated. A separate REFERENCE template is completed to provide the proper citation for
each reference.

Example

/* Template: Target Template Rev: 1995-01-01 */

/* Note: The following template is used for the */
/* submission of a target to the PDS */

OBJECT = TARGET
TARGET_NAME = JUPITER

OBJECT = TARGET_INFORMATION
TARGET_TYPE = PLANET
PRIMARY_BODY_NAME = SUN
ORBIT_DIRECTION = PROGRADE
ROTATION_DIRECTION = PROGRADE
TARGET_DESC = “

A_AXIS_RADIUS : 71492.000000
 B_AXIS_RADIUS : 71492.000000
 BOND_ALBEDO : UNK
 C_AXIS_RADIUS : 66854.000000
 FLATTENING : 0.006500
 MAGNETIC_MOMENT : 155000000000000000000.000000
 MASS : 1898799999999999953652202602496.000000
 MASS_DENSITY : 1.330000
 MINIMUM_SURFACE_TEMPERATURE : UNK
 MAXIMUM_SURFACE_TEMPERATURE : UNK
 MEAN_SURFACE_TEMPERATURE : UNK
 EQUATORIAL_RADIUS : 71492.000000
 MEAN_RADIUS : 69911.000000
 SURFACE_GRAVITY : 25.900000
 REVOLUTION_PERIOD : 4333.000000
 POLE_RIGHT_ASCENSION : 268.000000
 POLE_DECLINATION : 64.500000
 SIDEREAL_ROTATION_PERIOD : 0.410000
 MEAN_SOLAR_DAY : 0.410000
 OBLIQUITY : 3.100000
 ORBITAL_ECCENTRICITY : 0.048000
 ORBITAL_INCLINATION : 1.300000
 ORBITAL_SEMIMAJOR_AXIS : 778376719.000000
 ASCENDING_NODE_LONGITUDE : 100.500000

B-40 Appendix B. Complete PDS Catalog Object Template Set

 PERIAPSIS_ARGUMENT_ANGLE : 275.200000”

END_OBJECT = TARGET_INFORMATION

OBJECT = TARGET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “XYZ95”
END_OBJECT = TARGET_REFERENCE_INFORMATION

END_OBJECT = TARGET
END

Appendix C Internal Representation of Data Types C-1

APPENDIX C

Internal Representation of Data Types

This appendix contains the detailed internal representations of the PDS standard data types listed
in Table 3.2 of the Data Type Definitions chapter of this document.

C.1 MSB_INTEGER

Aliases: INTEGER, MAC_INTEGER, SUN_INTEGER
__
MSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
__
MSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
__
MSB 1-byte integers:

* Bit 7 is used for the sign bit.
__
Where:

76543210 76543210 76543210 76543210

i-sign

i3 i2 i1 i0

b0 b1 b2 b3

76543210 76543210

i-sign

i1 i0

b0 b1

76543210

i-sign

i0

b0

C-2 Appendix C Internal Representation of Data Types

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i-sign = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:

In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
__

C.2 MSB_UNSIGNED_INTEGER

Aliases:MAC_UNSIGNED_INTEGER, SUN_UNSIGNED_INTEGER,
UNSIGNED_INTEGER

MSB 4 byte unsigned integers:

__

76543210 76543210 76543210 76543210

i3 i2 i1 i0

b0 b1 b2 b3

Appendix C Internal Representation of Data Types C-3

MSB 2-byte unsigned integers:

__

MSB 1-byte unsigned integers:

__

Where:

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:
In i0, bits 0-7 represent 2**0 through 2**7

__

76543210 76543210

i1 i0

b0 b1

76543210

i0

b0

C-4 Appendix C Internal Representation of Data Types

C.3 LSB_INTEGER

Aliases: PC_INTEGER, VAX_INTEGER
__
LSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
__
LSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
__
LSB 1-byte integers:

* Bit 7 in i1 is used for the sign bit.
__

Where:
b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0

first, then b1, b2, and b3).

i-sign = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =

i-sign

76543210 76543210

i1i0

b2 b3

7654321076543210

i2 i3

b1b0

76543210

i-sign

i0

b0

76543210

i1

b1

76543210

i-sign

i0

b0

Appendix C Internal Representation of Data Types C-5

bit 0, highest value = bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:
In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
__

C.4 LSB_UNSIGNED_INTEGER

Aliases: PC_UNSIGNED_INTEGER, VAX_UNSIGNED_INTEGER
__

LSB 4-byte unsigned integers:

__
LSB 2-byte unsigned integers:

__
LSB 1-byte unsigned integers:

__

76543210 76543210 76543210 76543210

i3i2i1i0

b0 b1 b2 b3

76543210 76543210

i1i0

b0 b1

76543210

i0

b0

C-6 Appendix C Internal Representation of Data Types

Where:

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then
b1, b2, and b3).

i0 - 13 =Arrangement of bytes in the integer, from lowest order to highest order. The bits
within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value = bit 7)
in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:

In i0, bits 0-7 represent 2**0 through 2**7
__

C.5 IEEE_REAL

Aliases: FLOAT, MAC_REAL, REAL, SUN_REAL

__
IEEE 4-byte real numbers:

76543210 76543210 76543210 76543210

m2m1m0e1

b0 b1 b2 b3

m-sign
e0

Appendix C Internal Representation of Data Types C-7

IEEE 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

IEEE 10-byte (temporary) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

int-bit = In l0 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g.,lowest value = rightmost bit in the exponent part of the

 byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision):
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision):

76543210 76543210 76543210 76543210

m2m0e0e1

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m1 m3 m4 m5 m6

b4 b5 b6 b7

76543210 76543210 76543210 76543210

m1e0e1

b0 b1 b2 b3

m-sign

76543210

m0 m2

b4

int-bit (always 1)

76543210 76543210 76543210 76543210

m6m4m3

b5 b6 b7 b8

76543210

m5 m7

b9

C-8 Appendix C Internal Representation of Data Types

In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fractions. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4 -bytes (single precision):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision):
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

__

These representations all follow the format:

1. (mantissa) x 2** (exponent - bias)
with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored
in the third byte (b2)),

Appendix C Internal Representation of Data Types C-9

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored - bias =
true exponent value).
__

C.6 IEEE_COMPLEX

Aliases: COMPLEX, MAC_COMPLEX, SUN_COMPLEX

Two contiguous IEEE_REALs in memory, representing the real and imaginary parts.
__

C.7 PC_REAL

Aliases: None
__
PC 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
PC 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

76543210 76543210 76543210 76543210

e1m0m1m2

b0 b1 b2 b3

m-signe0-bit

76543210 76543210 76543210 76543210

m3m5 e0m6

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m4 m2 m1 m0 e1

b4 b5 b6 b7

C-10 Appendix C Internal Representation of Data Types

PC 10-byte (temporary) real numbers:

__

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

int-bit = In 10 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value = rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**4 through 2**10

76543210 76543210 76543210 76543210

m4m6m7

b0 b1 b2 b3

76543210

m5 m3

b4

76543210 76543210 76543210 76543210

e0m1m2

b5 b6 b7 b8

76543210

m0 e1

b9

m-signint-bit

Appendix C Internal Representation of Data Types C-11

Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

__

These representations all follow the format:

1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored
in the third byte (b2)),

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored -
bias=true exponent value).

__

C-12 Appendix C Internal Representation of Data Types

C.8 PC_COMPLEX

Aliases: None

Two contiguous PC-REALs in memory, representing the real and imaginary parts.
__

C.9 VAX_REAL, VAXG_REAL

Aliases: VAX_DOUBLE (for VAX_REAL only, none for VAXG_REAL)
__
VAX F-type 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
VAX D-type 8-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
VAX G-type 8-byte real numbers:

__

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m2

m-signe0

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m2 m4 m3 m6 m5

b4 b5 b6 b7

e0-bit

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m2 m4 m3 m6 m5

b4 b5 b6 b7

e0

Appendix C Internal Representation of Data Types C-13

VAX H-type 16-byte real numbers:

Where:

b0 - b15 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value= rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (F-type, single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (D-type, double precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (G-type, double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1025

76543210 76543210 76543210 76543210

m0e1

b0 b1 b2 b3

76543210 76543210 76543210 76543210

m1 m3 m2 m5 m4

b4 b5 b6 b7

e0

76543210 76543210 76543210 76543210

m8m6

b8 b9 b10 b11

76543210 76543210 76543210 76543210

m9 m11 m10 m13 m12

b12 b13 b14 b15

m7

m-sign

C-14 Appendix C Internal Representation of Data Types

16-bytes (H-type) :

In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16385

m0 -m13 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (F-type, single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (D-type, double precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55

8-bytes (G-type, double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36

‘ In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

16-bytes (H-type) :
In m0, bits 7-0 represent 1/2**1 through 1/2**8
In m1, bits 7-0 represent 1/2**9 through 1/2**16
In m2, bits 7-0 represent 1/2**17 through 1/2**24
In m3, bits 7-0 represent 1/2**25 through 1/2**32
In m4, bits 7-0 represent 1/2**33 through 1/2**40
In m5, bits 7-0 represent 1/2**41 through 1/2**48
In m6, bits 7-0 represent 1/2**49 through 1/2**56
In m7, bits 7-0 represent 1/2**57 through 1/2**64
In m8, bits 7-0 represent 1/2**65 through 1/2**72
In m9, bits 7-0 represent 1/2**73 through 1/2**80

Appendix C Internal Representation of Data Types C-15

In m10, bits 7-0 represent 1/2**81 through 1/2**88
In m11, bits 7-0 represent 1/2**89 through 1/2**96
In m12, bits 7-0 represent 1/2**97 through 1/2**104
In m13, bits 7-0 represent 1/2**105 through 1/2**112

__

These representations all follow the format:

1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored
- bias = true exponent value).
__

C.10 VAX_COMPLEX, VAXG_COMPLEX

Aliases: None

Two contiguous VAX_REALs or VAXG_REALs in memory, representing the real and imaginary
parts.
__

C.11 MSB_BIT_STRING

Aliases: BIT_STRING
__
MSB n-byte bit strings:

As read from a file:

No byte swapping is needed.
Note: for n-byte bitstrings, continue pattern above.
__

MSB 2-byte bit strings:

76543210 76543210 76543210 76543210

bits
1-8

b0 b1 b2 b3

bits
9-16

bits
17-24

bits
25-32

bits
((nx8)-7) - (nx8)

b x (n-1)

. . .

C-16 Appendix C Internal Representation of Data Types

As read from file:

No byte swapping is needed.
__

MSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
__

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then
b1, b2, and b3).

The bits within a byte are numbered from left to right:

__

C.12 LSB_BIT_STRING

Aliases: VAX_BIT_STRING
__
LSB 4-byte bit strings:

76543210 76543210

bits
1-8

b0 b1

bits
9-16

76543210

bits
1-8

b0

76543210

bit 8bit 1

Appendix C Internal Representation of Data Types C-17

As read from a file:

After bytes are swapped:

__
LSB 2-byte bit strings:

As read from a file:

After bytes are swapped:

__
LSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
__

76543210 76543210 76543210 76543210

bits
25-32

b0 b1 b2 b3

bits
17-24

bits
9-16

bits
1-8

76543210 76543210 76543210 76543210

bits
1-8

b3 b2 b1 b0

bits
9-16

bits
17-24

bits
25-32

76543210 76543210

bits
9-16

b0 b1

bits
1-8

76543210 76543210

bits
9-16

b0b1

bits
1-8

76543210

b0

bits
1-8

C-18 Appendix C Internal Representation of Data Types

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first,
then b1, b2, and b3).

The bits within a byte are numbered from left to right:

76543210

bit 8bit 1

Appendix D Examples of Required Files D-1

APPENDIX D

Examples of Required Files

The examples in this Appendix are based on both existing or planned PDS archive volumes, but
have been modified to reflect the most recent version of the PDS standards.

D.1 AAREADME.TXT

Each PDS archive volume shall include an “AAREADME.TXT” file that contains an overview of
the contents and structure of the volume. An annotated outline is provided here as guidance for
compiling this file.

Annotated Outline

I. PDS TEXT Object (must appear in an attached or detached label)

II. Volume Title

III. Contents

1. Introduction
a. Science data content
b. Conformance to PDS standards
c. Document or institutional references for additional science information

2. Volume format
a. Computer systems that can access the volume
b. International standards to which the volume conforms

3. File formats
a. Data record formats
b. Specifications for specialized files (e.g., Postscript)
c. Description of PDS objects, pointers, etc.

4. Volume contents
a. Directory structure of the volume

5. Recommended CD-ROM drives (if applicable)
a. Driver descriptions and notes for all appropriate computer platforms

D-2 Appendix D Examples of Required Files

6. Errata (if applicable)
a. Known errors, cautionary notes, disclaimers, etc.
b. Reference to the ERRATA.TXT file on the volume or online

7. Contacts
a. Names and addresses of people or organizations to contact for questions
concerning science data, technical support, data product generation and labelling,
etc.

Example:

The following is an example of an AAREADME.TXT file used on a PDS archive volume that does
not use the logical volume construct. Note that section 3 in the example would need to be updated
if logical volumes were present.

PDS_VERSION_ID = PDS3

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 80
SPACECRAFT_NAME = MAGELLAN
TARGET_NAME = VENUS
OBJECT = TEXT
PUBLICATION_DATE = 1994-06-01
NOTE = "MAGELLAN LOSAPDR ARCHIVE CD-WO"
END_OBJECT = TEXT
END

MAGELLAN LOSAPDR ARCHIVE CD-WO

1. Introduction

This CD-WO contains Magellan Cycle 4 LOSAPDR (Line of Sight Acceleration Profile Data Record) products. It also contains
documentation which describe the LOSAPDRs. Each LOSAPDR product contains the results from processing of radio tracking data
of the Magellan spacecraft. There are 866 LOSAPDRs on this volume.

The LOSAPDR products archived on this volume are the exact products released by the Magellan Project. Supporting
documentation and label files conform to the Planetary Data System (PDS) Standards, Version 3.0, Jet Propulsion Laboratory (JPL)
document JPL D-7669.

Additional information about the Magellan gravity experiment, including the acquisition, processing, and quality of the LOSAPDR
data, can be found in JPL documents that are available from the PDS Geosciences Node, Washington University, St. Louis, MO.

2. Disk Format

The disk has been formatted so that a variety of computer systems (e.g. IBM PC, Macintosh, Sun) may access the data. Specifically,
it is formatted according to the ISO 9660 level 1 Interchange Standard. For further information, refer to the ISO 9660 Standard
Document: RF# ISO 9660-1988, 15 April 1988.

3. File Formats

Each orbit for which gravity data exists is represented by one LOSAPDR data file. The LOSAPDR is an ASCII file. The data file
contains 3 tables: 1) HEADER_TABLE; 2) TIMES_TABLE; and 3) RESULTS_TABLE. The HEADER_TABLE is a single-row
multi-column table containing information on initial values, control parameters, and simple calculations required by the program

Appendix D Examples of Required Files D-3

that generates the data files. The TIMES_TABLE is a single column containing exact times bounding spline intervals to the Doppler
residuals. The number of rows is variable. The RESULTS_TABLE contains the results from spline fits to Doppler residuals. Each
row in the table contains times, Doppler residuals, spacecraft position and velocity information, and inferred spacecraft acceleration.
The data files are described by PDS labels embedded at the beginning of the file. Further information on LOSAPDR file formats
and contents can also be obtained from the Magellan Software Interface Specification (SIS) document NAV-138. A copy of the
document is stored on this disk as file LOSAPDR.TXT in the DOCUMENT directory.

All document files and detached label files contain 80-byte fixed-length records, with a carriage return character (ASCII 13) in the
79th byte and a line feed character (ASCII 10) in the 80th byte. This allows the files to be read by the MacOS, DOS, Unix, and VMS
operating systems. All tabular files are also described by PDS labels, either embedded at the beginning of the file or detached. If
detached, the PDS label file has the same name as the data file it describes, with the extension .LBL; for example, the file
INDEX.TAB is accompanied by the detached label file INDEX.LBL in the same directory.

Tabular files are formatted so that they may be read directly into many database management systems on various computers. All
fields are separated by commas, and character fields are enclosed in double quotation marks ("). Character fields are left justified,
and numeric fields are right justified. The "start byte" and "bytes" values listed in the labels do not include the commas between
fields or the quotation marks surrounding character fields. The records are of fixed length, and the last two bytes of each record
contain the ASCII carriage return and line feed characters. This allows a table to be treated as a fixed length record file on computers
that support this file type and as a normal text file on other computers.

A PostScript file, REPORT.PS, is included on this volume. This PostScript document is a validation report that lists all LOSAPDRs,
and gives specific information, comments, and the status of each data file after a quality check and validation at the PDS Geophysics
Subnode. The document is described by the detached label file, REPORT.LBL. The document can also be viewed by a Display
PostScript program and can be printed out from a PostScript printer. The ASCII text version of the PostScript file is REPORT.ASC.

PDS labels are object-oriented. The object to which the label refers (e.g., IMAGE, TABLE, etc.) is denoted by a statement of the
form:

^object = location

in which the carat character (^, also called a pointer in this context) indicates that the object starts at the given location. In an attached
label, the location is an integer representing the starting record number of the object (the first record in the file is record 1). In a
detached label, the location denotes the name of the file containing the object, along with the starting record or byte number. For
example:

^TABLE = "INDEX.TAB"

indicates that the TABLE object points to the file INDEX.TAB .

Pointers to data objects are always required to be located in the same directory as the label file, so the file INDEX.TAB in this
example is located in the same directory as the detached label file.

Other types of pointer statements can also be found on this volume. To resolve the pointer statement, first look in the same directory
as the file containing the pointer statement. If the pointer is still unresolved, look in the following top level directory:
^ STRUCTURE - LABEL directory
^ CATALOG - CATALOG directory
^DATA_SET_MAP_PROJECTION - CATALOG directory
^DESCRIPTION - DOCUMENT directory.

Below is a list of the possible formats for the ^object keyword.

^object = n
^object = n<BYTES>
^object = "filename.ext"
^object = ("filename.ext",n)
^object = ("filename.ext",n<BYTES>)

D-4 Appendix D Examples of Required Files

where

n is the starting record or byte number of the object,
counting from the beginning of the file (record 1,
byte 1)

<BYTES> indicates that the number given is in units of bytes
filename is the upper-case file name
ext is the upper-case file extension

4. CD-ROM Contents

The files on this CD-ROM are organized in one top-level directory with several subdirectories. The following table shows the
structure and content of these directories. In the table, directory names are enclosed in square brackets ([]), upper-case letters
indicate an actual directory or file name, and lower-case letters indicate the general form of a set of directory or file names.

FILE CONTENTS

Top-level directory
|
|- AAREADME.TXT The file you are reading.
|
|- ERRATA.TXT Description of known anomalies and errors
| present on this volume.
|
|- VOLDESC.CAT A description of the contents of this CD-
| ROM volume in a format readable
| by both humans and computers.
|
|- [CATALOG] A directory containing information about the
| | LOSAPDR dataset.
| |
| |- CATALOG.CAT PDS catalog objects. Mission, spacecraft
| | and instrument descriptions.
| |
| |- CATINFO.TXT Description of files in the CATALOG
| | directory.
| |
| |- DATASET.CAT PDS dataset catalog object. A description
| of the dataset, parameters, processing, data
| coverage and quality.
|
|- [DATA] A directory containing LOSAPDR data files.
| |- [mmmmnnnn] Directories containing LOSAPDR data files
| | for orbits between 'mmmm' and 'nnnn'.
| |
| | |- L0mmmm.001 LOSAPDR file for orbit number 'mmmm'.
|
|- [DOCUMENT] A directory containing document files
| relating to this disk.
| |
| |- DOCINFO.TXT Description of files in the DOCUMENT
| | directory.
| |
| |- LOSAPDR.TXT A machine readable version of the LOSAPDR
| | SIS document describing the format and
| | content of the data files.
| |
| |- REPORT.ASC ASCII text version of REPORT.PS.
| |

Appendix D Examples of Required Files D-5

| |- REPORT.LBL A PDS detached label describing REPORT.ASC & REPORT.PS.
| |
| |- REPORT.PS A PostScript document that gives specific
| information about each LOSAPDR after a
| quality check and validation.
|
|- [INDEX] A directory containing index files relating
| | to this disk.
| |
| |- INDEX.LBL A PDS detached label describing INDEX.TAB.
| |
| |- INDEX.TAB Tabular summary of data files.
| |
| |- INDXINFO.TXT Description of files in the INDEX directory.

5. Recommended CD-ROM Drives and Driver Software

VAX/VMS
Drive: Digital Equipment Corporation (DEC) RRD40 or RRD50. Driver: DEC VFS CD-ROM driver V4.7 or V5.2 and up.

Note: The driver software may be obtained from Jason Hyon at
JPL. It is necessary to use this driver to access
Extended Attribute Records (XARs) on a CD-ROM.

VAX/Ultrix
Drive: DEC RRD40 or RRD50. Driver: Supplied with Ultrix 3.1.

Note: Internet users can obtain a copy of the "cdio" software
package via anonymous ftp from the "space.mit.edu"
server in the file named "src/cdio.shar". Contact Dr.
Peter Ford at Massachusetts Institute of Technology
for details (617-253-6485 or pgf@space.mit.edu).

IBM PC
Drive: Toshiba, Hitachi, Sony, or compatible. Driver: Microsoft MSCDEX version 2.2.

Note: The latest version of MSCDEX (released in February
1990) is generally available. Contact Jason Hyon for
assistance in locating a copy.

Apple Macintosh
Drive: Apple CD SC (Sony) or Toshiba. Driver: Apple CD-ROM driver.

Note: The Toshiba drive requires a separate driver, which may
be obtained from Toshiba.

Sun Micro (SunOS 4.0.x and earlier)
Drive: Delta Microsystems SS-660 (Sony). Driver: Delta Microsystems driver or SUN sr.o Driver.

Note: For questions concerning this driver, contact Denis
Down at Delta Microsystems, 415-449-6881.

Sun Micro (SunOS 4.0.x and later)
Drive: Sun Microsystems. Driver: SunOS sr.o driver.

Note: A patch must be made to SunOS before the Sun driver can
access any CD-ROM files containing Extended Attribute
Records. A copy of this patch is available to Internet

D-6 Appendix D Examples of Required Files

users via anonymous ftp from the "space.mit.edu" server
in the file named "src/SunOS.4.x.CD-ROM.patch".

6. Errata and Disclaimer

A cumulative list of anomalies and errors is maintained in the file ERRATA.TXT at the root directory of this volume.

Although considerable care has gone into making this volume, errors are both possible and likely. Users of the data are advised to
exercise the same caution as they would when dealing with any other unknown data set.

Reports of errors or difficulties would be appreciated. Please contact one of the persons listed herein.

7. Whom to Contact for Information

For questions concerning this volume set, data products and documentation:

Jim Alexopoulos Washington University Dept. of Earth and Planetary Sciences 1 Brookings Drive Campus Box 1169
St. Louis, MO 63130 314-935-5365

Electronic mail address: Internet: jim@wuzzy.wustl.edu

For questions about how to read the CD-ROM:

Jason J. Hyon Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive MS 525-3610
Pasadena, CA 91109 818-306-6054

Electronic mail addresses: Internet: jhyon@jplpds.jpl.nasa.gov NASAmail: JHYON NSI: JPLPDS::JHYON X.400:
(ID:JHYON,PRMD:NASAMAIL,ADMD:TELEMAIL,C:USA)

For questions concerning the generation of LOSAPDR products:

William L. Sjogren Magellan Gravity Principal Investigator Jet Propulsion Laboratory California Institute of Technology
4800 Oak Grove Drive MS 301-150 Pasadena, CA 91109 818-354-4868

Electronic mail address: Internet: wls@nomad.jpl.nasa.gov

For questions concerning LOSAPDR data:

William L. Sjogren
Jet Propulsion Laboratory Pasadena, CA

Dr. Roger J. Phillips Washington University Dept. of Earth and Planetary Sciences 1 Brookings Dr. Campus Box 1169
St. Louis, MO 63130 314-935-6356

Electronic mail address: Internet: phillips@wustite.wustl.edu

For questions concerning LOSAPDR labels:

Dr. Richard Simpson Stanford University Durand Bldg. Room 232 Stanford, CA 94305-4055 415-723-3525

Electronic mail address: Internet: rsimpson@magellan.stanford.edu

This disk was produced by Jim Alexopoulos.

Appendix D Examples of Required Files D-7

D.2 INDXINFO.TXT

Each PDS archive volume shall include an “INDXINFO.TXT” file in the INDEX subdirectory that
contains an overview of the contents and structure of the index table or tables on the volume as well
as usage notes. An example is provided here as guidance for compiling this file.

Example:

CCSD3ZF0000100000001NJPL3IF0PDSX00000001
PDS_VERSION_ID = PDS3

RECORD_TYPE = STREAM
OBJECT = TEXT
NOTE = "Notes on using the image index tables."
PUBLICATION_DATE = 1990-12-20
END_OBJECT = TEXT
END

NOTES ON USING THE IMAGE INDEX TABLES

These notes describe the contents and format of the two image index tables on this CD-ROM, INDEX.TAB and CUMINDEX.TAB.

The image index table (INDEX.TAB) contains one record for each image file on this Viking Orbiter CD-ROM. The cumulative
image index table (CUMINDEX.TAB) contains one record for each image file on all the Viking Orbiter CD-ROMs published so
far. The following description applies to both of these tables.

The image index tables are formatted so that they may be read directly into many database management systems on various
computers.

All fields are separated by commas, and character fields are enclosed in double quotation marks ("). Each record contains 512 bytes
of ASCII character data (1 character = 1 byte). Bytes 511 and 512 contain the ASCII carriage return and line feed characters. This
allows the table to be treated as a fixed length record file on computers that support this file type and as a normal text file on other
computers. The structure and content of the image index tables are described in the file VOLINFO.TXT located in the DOCUMENT
directory. The files INDEX.LBL and CUMINDEX.LBL contain labels for INDEX.TAB and CUMINDEX.TAB coded in the
Object Description Language (ODL), providing a formal description of the index table structure.

Users of most commercial database management systems should be able to use the list below to define the names and characteristics
of each field and then to load the tables into their systems using a delimited ASCII text input format. If necessary the specific
column start positions and lengths can be used to load the data.

For personal computer users, DBASE III DBF structures are also provided in the files INDEX.DBF and CUMINDEX.DBF. These
files can be used to load the INDEX.TAB or CUMINDEX.TAB files into DBASE III or IV with the following commands:

USE INDEX
APPEND FROM INDEX.TAB DELIMITED

USE CUMINDEX
APPEND FROM CUMINDEX.TAB DELIMITED

Once the table is loaded into DBASE III, it can generally be automatically loaded into other data managers or spreadsheets that
provide search and retrieval capabilities.

D-8 Appendix D Examples of Required Files

D.3 SOFTINFO.TXT

Each PDS archive volume that contains software (in the SOFTWARE subdirectory) shall include
a “SOFTINFO.TXT” file. This file contains a description of the software and usage information.
An outline and example are provided here as guidance for compiling this file.

Outline

I. PDS TEXT Object (must appear in an attached or detached label)

II. Contents

1. Introduction

2. Software Description
A brief description of software included on the volume. This can be broken down into
separate sections for each type of software. This should indicate where the software and
its documentation reside in the software hierarchy, as well as describe any known
limitations or problems.

3. Software Directory Structure (optional)

4. Software License Information and Disclaimers (if appropriate)

Example:

PDS_VERSION_ID = PDS3

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 80
OBJECT = TEXT
INTERCHANGE_FORMAT = ASCII
PUBLICATION_DATE = 1994-10-01
NOTE = “Description of software provided with the Clementine CD-ROM
set”
END_OBJECT = TEXT
END

 Clementine Software

1. Introduction

This directory contains software that provides display and processing
capabilities for the Clementine data archived on this CD-ROM set.

Appendix D Examples of Required Files D-9

2. Software Description

2.1. Decompression Software

The PCDOS, MACSYS7 and SUNOS subdirectories all contain software which can be used to decompress the Clementine raw
images. CLEMDCMP will decompress the raw image and output it into one of four formats:

1) decompressed PDS labeled file which contains PDS labels, the histogram object, and an image object, either the browse
image or the full image
2) decompressed image file, no labels
3) a decompressed image in the GIF format
4) a decompressed image in the TIFF format

The source code is provided in the SRC subdirectory, of each platform subdirectory. Instructions on how to install and run the
software is in the file CLEMDCMP.TXT in the DOC subdirectory, of each platform subdirectory.

Because the image decompression program, CLEMDCMP, requires a Discrete Cosine Transform (DCT) it may take several
minutes to decompress an image on hardware platforms with slow processors. For example, in tests on a Macintosh
IIci, the decompression takes approximately 4 minutes. CLEMDCMP has been tested on hardware platforms with processors, such
as an Intel 486DX2/66-Mhz, and the decompression takes just several seconds.

2.2. Display Software

CLIMDISP in the PCDOS/BIN subdirectory is an image display and processing program. It can be used to display Clementine
uncompressed images and histograms. See CLIMDISP.TXT in the PCDOS/DOC subdirectory for instructions on how to install
and run the program.

Note: CLIMDISP currently can not create GIF formatted files for the Clementine images. Additionally, it can not read the version
of GIF files created by the Clementine Decompression (CLEMDCMP) program which is also included on the Clementine EDR
Archive CD-ROMs. If you wish to display Clementine images with CLIMDISP, generate a PDS format image file when
decompressing with CLEMDCMP.

A special version of NIH Image, found in the MACSYS7/BIN subdirectory, will display PDS decompressed Clementine images.
This program is stored in a Stuffit file which is in BinHex format. See IMAGE.TXT in the DOC subdirectory for instructions on
how to install and run the program.

The Clementine EDR image files use the PDS label constructs RECORD_TYPE = "UNK", and ^IMAGE = xxxxx <BYTES> to
define the structure of the file. This form of the labels is not supported by the current versions of IMDISP and IMAGE4PDS that
are widely distributed by the PDS. To read Clementine decompressed formatted files use the version of IMAGE
and CLIMDISP programs that are supplied on this CD-ROM. The Clementine versions CLIMDISP and IMAGE have been tested
only on the Clementine data products. No attempt has been made to determine if the Clementine program versions will work on any
other PDS data product.

XV is a shareware program for displaying images. XV was written by John Bradley of the University of Pennsylvania. It is in a
compressed tar file in the SUNOS/SRC subdirectory. See XV.TXT in the SUNOS/DOC subdirectory for instructions on how to
decompress and untar this file. XV will not display PDS labeled files, but will display TIF and GIF formatted files.

 The XV software, for image display on a sun/unix environment, is not able to read the Clementine PDS labeled files. If you intend
to use XV as the display system for the CLementine data products, output GIF or TIFF images with the CLEMDCMP program.

2.3. SPICE Software

Included on one of the ancillary disks associated with this volume set is the Navigation and Ancillary Information Facility (NAIF)
Toolkit and some additional NAIF software. The major component of the NAIF Toolkit is the SPICE Library (SPICELIB), a
collection of portable ANSI FORTRAN 77 subroutines. Some of these subroutines are used to read the SPICE kernel files
containing Clementine ancillary data, such as spacecraft position, spacecraft attitude, instrument orientation and target body
size, shape and orientation. Other SPICELIB subroutines may be used to compute typical observation geometry parameters--such
as range, lighting angles, and LAT/LON of camera optic axis intercept on the target body. Several utility programs and SPICELIB
demonstration programs are also included in the Toolkit. Versions of this software tested on many popular platforms are provided,

D-10 Appendix D Examples of Required Files

as are instructions for porting the code to additional platforms. The FORTRAN subroutines can be called from a user's own
application program, whether written in FORTRAN or C, or possibly yet another language. Consult your compiler's Reference
Manual for instructions. One of the NAIF programs included in this software collection is PICGEO (for Picture Geometry). It was
used to compute all of the geometric parameters appearing in the image labels and index tables. It is included so that users may
clearly see the algorithms used in computing these quantities, and so that recalculation of image label geometry parameters using
revised algorithms, or adding additional parameters, can be easily achieved.

2.4. Miscellaneous Image Processing Software

MSHELL is an interactive command line and menu driven Image and Signal processing language, developed by ACT Corp., which
runs under the Microsoft Windows 3.x or Microsoft NT. MSHELL provides powerful scientific image and signal visualization and
processing. A number of custom features were added to the MSHELL Image/Signal Processing Environment to support the Clem-
entine Program. This software is included on one of the ancillary disks associated with this volume set, and will be under a subdi-
rectory of the PCDOS directory.

3. Software Directory Hierarchy

The SOFTWARE subdirectories are based on hardware platforms. Under each platform subdirectory, the executables are in the
BIN subdirectory, the source is in the SRC subdirectory and documentation on each program is in the DOC subdirectory. Each
DOC subdirectory contains a file, SWINV.CAT which is part of the PDS Software Inventory describing software available within
the Planetary Science Community. The contents of the SOFTWARE directory are shown below.

[SOFTWARE]
|
|-SOFTINFO.TXT
|
|-[PCDOS]
| |
| |-[BIN]
| | |
| | |-CLEMDCMP.EXE
| | |-CLIMDISP.EXE
| | |-CLIMDISP.HLP
| |
| |-[SRC]
| | |
| | |-CLEMDCMP.C
| | |-PDS.C
| | |-BITSTRM.C
| | |-DECOMP.C
| | |-HUFFMAN.C
| | |-WRITEGIF.C
| | |-PDS.H
| | |-JPEG_C.H
| | |-CLEMDCMP.MAK
| |
| |-[DOC]
| |
| |-CLEMDCMP.TXT
| |-CLIMDISP.TXT
| |-SWINV.CAT
|
|-[MACSYS7]
| |
| |-[BIN]
| | |
| | |-CLEMDEXE.HQX
| | |-IMAGE.HQX
| |
| |-[SRC]

Appendix D Examples of Required Files D-11

| | |
| | |-CLEMDSRC.HQX
| |
| |-[DOC]
| |
| |-CLEMDCMP.TXT
| |-IMAGE.TXT
| |-SWINV.CAT
|
|-[SUNOS]
 |
 |-[BIN]
 | |
 | |-CLEMDEXE.TZU
 |
 |-[SRC]
 | |
 | |-CLEMDSRC.TZU
 | |-XV3A.TZ
 |
 |-[DOC]
 |
 |-CLEMDCMP.TXT
 |-XV.TXT
 |-SWINV.CAT

D-12 Appendix D Examples of Required Files

Appendix E. NAIF Toolkit Directory Structure E-1

APPENDIX E

NAIF TOOLKIT DIRECTORY STRUCTURE

This appendix contains the software directory structure of the NAIF Toolkit for a SUN. It is an
example of a platform-base model for a single platform. Note that the directory organization shown
here does not strictly conform to the recommendations discussed in the Volume Organization and
Naming chapter of this document.

NAIF
--
The NAIF directory contains one subdirectory, TOOLKIT. The TOOLKIT tree contains all of the
files that make up the NAIF Toolkit.

TOOLKIT
--
The TOOLKIT directory contains the file make_toolkit.csh. This is a C shell script that builds all
of the object libraries and executables in the TOOLKIT.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

(directory under which you installed the NAIF Toolkit)

naif

toolkit

make_toolkit.csh

E-2 Appendix E.NAIF Toolkit Directory Structure

TOOLKIT also contains several subdirectories that will be described in more detail in the
following sections.

1. SRC
The subdirectories of this directory contain all of the source code for the products in the TOOLKIT.

2. LIB
This directory contains all of the TOOLKIT object libraries.

3. EXE
This directory contains all of the TOOLKIT executables, and where applicable, scripts to run the
executables.

4. DOC
This directory contains all of the TOOLKIT documentation. This includes User's Guides for the
programs, Required Reading files for SPICELIB, documents describing the contents of SPICELIB
such as the Permuted Index and Module Summary, and documents describing the contents and
installation of the Toolkit.

5. ETC
The subdirectories of this directory contain product-specific files that are neither source,
documentation, nor data. This includes configuration files, set up files, and help files. The
subdirectory build contains the C shell script that creates the toolkit object libraries and
executables.

6. EXAMPLE_DATA
This directory contains example data for use with the COOKBOOK and SPTEST programs. These
files are to be used only with these programs.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

src lib exe doc etc example_data

Appendix E. NAIF Toolkit Directory Structure E-3

SRC
--
The SRC directory contains one subdirectory for each product in the NAIF Toolkit. Each of these
product directories contains the source code files and procedures to create the executable or object
library.

SPICELIB

SPICELIB is a Fortran source code library that contains approximately 650 functions, subroutines,
and entry points.

This directory contains the SPICELIB source files.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

spicelib support spacit commnt cookbook sptest

src

inspekt

(directory under which you installed the NAIF Toolkit)

naif

toolkit

spicelib

src

*.f

E-4 Appendix E.NAIF Toolkit Directory Structure

SUPPORT

SUPPORT is a Fortran source code library that contains routines that support the Toolkit programs.
These routines are not intended to be used by anyone except NAIF. These routines are not officially
supported and may undergo radical changes such as calling sequence changes. They may even be
deleted. Do not use them!

 This directory contains the SUPPORT library source files.

SPACIT

SPACIT is a utility program that performs three functions: it converts transfer format SPK, CK and
EK files to binary format, it converts binary SPK, CK and EK files to transfer format, and it
summarizes the contents of binary SPK, CK and EK files.

 This directory contains the source code for the SPACIT main program
 and supporting routines.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

support

src

*.f

(directory under which you installed the NAIF Toolkit)

naif

toolkit

spaclit

src

*.f

spaclit.main

Appendix E. NAIF Toolkit Directory Structure E-5

COMMNT

COMMNT is a utility program that is used to add comments, extract comments, read comments,
or delete comments in SPICE SPK, CK and EK files.

 This directory contains the COMMNT main program source file.

COOKBOOK

The cookbook programs are sample programs that demonstrate how to use SPICELIB routines to
obtain state vectors, convert between different time representations, manipulate the comments in
binary SPK and CK files, and solve simple geometry problems.

This directory contains the COOKBOOK program source files.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

commnt

src

commnt.main

(directory under which you installed the NAIF Toolkit)

naif

toolkit

cookbook

src

fstspk.main
simple.main
states.main
subpt.main
tictoc.main

E-6 Appendix E.NAIF Toolkit Directory Structure

INSPEKT

INSPEKT is a program that allows you to examine the contents of an events component of an E-
kernel.

This directory contains the source code for the INSPEKT main program and supporting routines.

SPTEST

SPTEST is a utility program that tests the SPK file readers by comparing states read on the NAIF
VAX with states read on the target machine.

This directory contains the SPTEST program source file.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

inspekt

src

inspekt.main
*.f
*.inc

(directory under which you installed the NAIF Toolkit)

naif

toolkit

sptest

src

sptest.main

Appendix E. NAIF Toolkit Directory Structure E-7

LIB
--
The LIB directory contains spicelib.a, the object library for SPICELIB. It also contains the object
library support.a, but this library is for use by the Toolkit programs only. Do not link your
applications with it!

EXE
--
The EXE directory contains the NAIF Toolkit executables and, where applicable, scripts to run
executables.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

lib

spicelib.a
support.a

E-8 Appendix E.NAIF Toolkit Directory Structure

DOC
--
The DOC directory contains all of the TOOLKIT documentation that is available on-line. This
includes the user's guides for the programs, all Required Reading files for SPICELIB, all
documents describing the contents and porting of SPICELIB, and documents describing the
installation and contents of the Toolkit. Please note that the INSPEKT User's Guide is not available
on-line.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

doc

commnt.ug
fstspk.ug
simple.ug
spacit.ug
sptest.ug
states.ug
subpt.ug
tictoc.ug
*.req
category.txt
libsum.txt
permuted_index.txt
porting.txt
toolkit_install.txt
toolkit_description.txt

Appendix E. NAIF Toolkit Directory Structure E-9

ETC
--
The ETC directory contains all files for the Toolkit products that are not source, documentation, or
data such as set up files, configuration files or help files. It also contains the C shell script used to
build the toolkit object libraries and executables.

EXAMPLE_DATA
--
The EXAMPLE_DATA directory contains all of the NAIF Toolkit data. This data are intended
only to be used with the TOOLKIT programs, and are included only to help you get started using
the Toolkit.

(directory under which you installed the NAIF Toolkit)

naif

toolkit

etc

spicelib support spacit commnt cookbook sptest build build_it.csh

(directory under which you installed the NAIF Toolkit)

naif

example_data

cook_01.tc
cook_01.tls
cook_01.tpc
cook_01.tsc
cook_01.tsp
cook_02.tc
cook_02.tsp
sptest.gen
sptest.rqs
sptest.tsp

E-10 Appendix E.NAIF Toolkit Directory Structure

Using the NAIF Toolkit
==
After the installation has been completed successfully, there are a few things that you need to do
to get started using SPICELIB. We recommend that you print out the source code for the cookbook
programs (./naif/toolkit/src/cookbook/*.main) and examine it. Try running some of the cookbook
programs yourself. The cookbook programs demonstrate how to use SPICELIB routines to obtain
state vectors, convert between different time representations, manipulate the comments in binary
SPK and CK files, and solve simple geometry problems.

Once you're ready to get your hands dirty, you should read the required reading files for SPICELIB.
The required reading files are located in the directory ./naif/toolkit/doc and have the extension
``.req''. They are text files that describe families of subroutines and how they interact with the rest
of SPICELIB.

The most important required reading files are: TIME, KERNEL, SPK, CK, SCLK, SPC, and
NAIF_IDS. You should read at least these.

After you've done these things, you're ready to start programming with SPICELIB!

Appendix -- NAIF's File Naming Conventions
==
NAIF follows a set of conventions for naming files based on the contents of the files. This allows
you to find certain types of files in a directory tree quickly.
1. *.for, *.f
Fortran-77 source code files.

2. *.main
Source code files for program modules.

3. *.inc
Fortran-77 include files.

4. *.c
C source code files.

5. *.o
Unix object files.

6. *.obj
VAX/VMS object files.

7. *.a
Unix object library files.

8. *.olb

Appendix E. NAIF Toolkit Directory Structure E-11

VAX/VMS object library files.

9. *.tsp
Transfer format SPK (ephemeris) files.

10. *.bsp
Binary format SPK (ephemeris) files.

11. *.tc
Transfer format CK (pointing) files.

12. *.bc
Binary format CK (pointing) files.

13. *.ti
Text IK (instrument parameters) files.

14. *.tls
Leapseconds kernel files.

15. *.tpc
Physical and cartographic constants kernel files.

16. *.tsc
Spacecraft clock coefficients kernel files.

17. *.txt
Text format documentation files.

18. *.ug
Text format User's Guides.

19. *.req
Text format SPICELIB Required Reading files.

20. make_toolkit.csh, build_it.csh
Unix C shell script files for creating the toolkit object libraries and executables.

21. make_toolkit.sh, build_it.sh
Unix Bourne shell script files for creating the toolkit object libraries and executables.

22. (product name)
Unix executable files. For example, spacit is the executable file for the product spacit.

23. make_(product name).com

E-12 Appendix E.NAIF Toolkit Directory Structure

VAX/VMS command procedures for creating products. For example, make_spicelib.com creates
the object library spicelib.olb, while make_spacit.com creates the executable spacit.exe.

24. (product name).exe
VAX/VMS executable files. For example, spacit.exe is the executable file for the product spacit.

These conventions are preliminary. As coordination with AMMOS and the Planetary Data System
(PDS) occurs, these conventions may be revised.

Appendix F. Acronyms and Abbreviations F-1

APPENDIX F

Acronyms and Abbreviations

The following list contains the acronyms and abbreviations which shall be used in all PDS
documentation.

AMMOS Advanced Multi-Mission Operations System

CCSDS Consultative Committee for Space Data Systems

CD-ROM Compact Disc - Read Only Memory

CD-WO Compact Disk Write Once

CN Central Node

CODMAC Committee on Data Management and Computation

DA Data Administrator

DBA Database Administrator

DE Data Engineer

DN Discipline Node

ECR Engineering Change Request

GSFC Goddard Space Flight Center

IDS Inter-Disciplinary Scientist

ISO International Standards Organization

JPL Jet Propulsion Laboratory

NAIF Navigation and Ancillary Information Facility

NASA National Aeronautics and Space Administration

NBS National Bureau of Standards

NSI/DECNET DEC Network

NSSDC National Space Science Data Center

ODL Object Description Language

PC Personal Computer

PDS Planetary Data System

PSDD Planetary Science Data Dictionary

F-2 Appendix F.Acronyms and Abbreviations

PI Principal Investigator

PVL Parameter Value Language

RPIF Regional Planetary Image Facility

SFDU Standard Formatted Data Unit

SIS System Interface Specification

SPICE Spacecraft, Planetary & Probe Ephemeris, Instrument,

C-Matrix, Event File - A system for storing and accessing

ancillary information.

SQL Structured Query Language

UTC Universal Time Coordinated (often called GMT)

VAX Virtual Address/Access Extension (DEC Computer)

WORM Write Once Read Many

Appendix G. SAVED Data G-1

Appendix G

SAVED Data

In rare cases data will be encountered in the PDS archive which are classified as having
ARCHIVE_STATUS = SAVED. These data are being preserved in a primitive form either
pending the production of an archive-quality product, or as part of a save-the-bits campaign for a
defunct mission or project. In these cases the most available information has been preserved in as
close an approximation of PDS archive format as possible. Following is a description of the criteria
applied to datasets considered for safing, and the PDS procedures applied during the process. It is
provided here for information only - saved datasets are not considered acceptable for the purposes
of meeting PDS archiving requirements.

G.1 Safekeeping Process and Procedures

The decision to save a dataset will normally be made within a discipline node after discussion with
the provider of the data. The decision may also be made by a data engineer at the Central Node
after discussion with both a data provider and the most relevant discipline node(s). Preservation
should take place according to the following procedures.

1. The details of every dataset to be saved will be discussed in a conference, such as a telecon or
iteration of e-mail messages, among the data provider, representatives of the relevant discipline
node(s), and a data engineer from Central Node. This discussion will address:

a. The characteristics of the data to be preserved
b. The reasons for preserving rather than archiving the data
c. The timetable for producing an archival product from the preserved data
d. The proposed unique VOLUME_ID for the product
e. The extent of the additional information to be included.

2. The conclusions of the decision-making conference will be summarized by the data engineer
and distributed to all participants.

3. The dataset will normally be prepared and delivered by the data provider according to the
agreed content and format.

4. The data engineer at the Central Node will ensure that the product is incorporated into the
Distributed Inventory System (DIS).

G-2 Appendix G. SAVED Data

G.2 Safekeeping Standards

The following items are desirable for any preserved dataset. Some are required.

1. VOLUME_ID - This is required for every preserved product, must be unique within PDS, and
must conform to the volume naming standards of PDS.

2. DIS.LBL - This is required for every preserved product and must conform to the PDS labelling
standards.

3. AAREADME.TXT - This describes the directory structure of the volume and the content of the
volume. It also includes contact information for the original source of the data.

4. INDEX.TXT - This is used if the individual files of data do not have PDS labels. It consists of
free format text and is a less rigorous version of INDEX.TAB.

5. Minimal labels - Individual files should be labelled with "minimal labels" as described in
Section 5.2.3.

6. Document directory - This is optional but all files must have minimal labels.

7. Software directory - This is optional but all files must have minimal labels

Items 1 through 5 are all strongly recommended for any preserved dataset. Items 6 and 7 are
strongly recommended if appropriate. Items 1 and 2 are absolutely required for all preserved
datasets.

